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PREFACE

The principal objective of this Qutline is to cover in con-
densed form suitable for self-instruction and review the subject™
matter of a first course in Analytic Geometry. To this endiwe
have treated a wide variety of topics in both two an;i\'fh?ee
dimensions; though the list is by no means exhaustive, few
courses will include all of this material. The Tabulat€d\Bibliog-
raphy is keved (o some of the standard texts and\wﬂl facilitate
the work of making cross-references.

Just as a knowledge of Analytic Geometryss necesbarv to the
study of the Caiculus, so certain studms,ng (lgebra, Plane and
Solid Geometry, and Trigenometry are‘es}efltial preliminaries to
Analytic Geometry. Chapter 1 is deydited wholly Lo basic re-
view and reference formulae in these'latter fields.

Many proofs of theorems are ificluded in this Outline in order
to satisfy the natural desire Q’fft}ie serious student to know how
certain formulae are deriyed. These derivations, the carefully
worked-oul IHLIStI‘atIO{tb,\ and the more than 200 accuralely
drawn figures shouldbeof material aid to the person who seeks
to gain a bhasic underslanding of the processes involved. Typi-
cal and standarproblems in the form of Exercises, for which
answers are w&pphed are inserted at the end of each topic. The
sample Q{“m*matlons given in Appendix A should help in pre-
paring for quizzes and final tests. Appendix B contains some
usefyl tabies,
~O C. 0. 0.
\\ Haverford, Penns yivgnia
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CHAPTER |
REFERENCE FORMULAE

1. Basic Formulae. The student will find it desirable t.; have,
before him certain reference formulae which he may coashit
from time to time. We therefore begin this Outline, WLth Z
selection of the more important formulae taken from:t‘l‘xe fields
of algebra, geometry, and trigonometry. A thoro Wreview of
these before going on to the study of analytic geGmetry will be
of great aid to the student. \

AN

2. Algebra. ¢ \ v

(1} Quadratic equation. The root.siﬁsdl:utions) of the quad-
ratic equation @x? + bx + ¢ = O az’e’

The expression A = bZ»A 4 aqeis cal]ed the discriminant.

(@) If A > 0, the rBQts are real and distinct;
(b) If & = 0, the'roots are real and equal;
(c) If 4 <0 the: Toots are complex.

2) F acton\a?\nozalwn The symbol #!, called “#n factorial,”
stands fox:‘ﬁbe product of the first # (positive) integers.

r%1) nl =1.2.3. (b) 0! = 1, by definition.

tg) Bmommf theorem. The expansion of (¢ + b)», where n
\a Dositive integer, is

@) (¢ + ) = @ + ng b + — n(n -1 a"h?

+ nin — 13)1(”' - au—sbs + .
ﬂ(ﬁ — 1)(”’ - 2) (?’3 -7 + 2) n-—r+1br—1
7 — 1!

TR
1



y REFERENCE FORMULAE [Ch. I

(b) Tﬁe rth term in this expansion is

nwin — VDn—2) - (n— 14 2) -
- 1)

(4) Logarithms.
(a) If g% = x, then, by definition of logarithm, log, x = b,

1 A
(b) log;.a = ﬁ)'?g:_b’ N
2\
To any base: o\ b
©) log MN = log M + log N, - ’
(d) log M4 = A log M, ON *

&

€) 1og% ~ log MN- = log M — log N;XOO

() log Y = log Mo = }elog M. \\\

(5) Deferminanis. The left-ha;ldliﬁémber of the identity

()
is called a determinant of the second order. It is another, and

useful, way of wriﬁng\ the algebraic quantity on the right.
Similarly for a deke’(imnant of the third order:

>

l.?g:sbibz — o

[+5} bx
25} bg'

% blcr[ = bty '1" 325361 ~+ @sbics — asbst, — @abils
(b) | as 'b:,\ JCy ~ @b
ng\’bﬁ Ca Waba. ,

'.’\.5; i ) . H
Detetrinants (a) and (b) are said to be “expanded” into their
equivalent algebraic forms.

s (6) Simultancous equations.

(a) Two linear equations in two unknowns.

¥ + by = ¢,
ax + by = ¢,
The solution is, in determinant form,
l:h by &
¢ b Qs €y a b
X = — = r = !
p y=ttpth pofa b 1| <0,
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{b) Three linear equations in three unknowns.

ax 4 by + ez =d, a oo

G by +cz=dy, D=|a, b e|0,

asx + bay + ¢z = dy, las 8 ¢

d, bt ¢ [£3] 1 €1 ‘al b, 4.

dg bz [ 2 dz Cy = bg dg
_ i@y ds 53 €3 _ | @ 3 03 [ a3 ba da
== ~Y=" p > i=—p

2\, \

(c) One linear and one quadratic equation, each 1n N
unknowns. N

ax + by +¢c=0,8"
Axr + Bxyv + Cyt + Dx + Ev + F = O\s

Solve the linear equation for one of the varlables say x, in
terms of the other and substitute this valie’ for x into the
quadratic equation. This will result in orle ‘quadratic equation
in one letter (y) alone which can be 3clwed by the quadratic
equation formula, yielding two pogsiblé values of y. Substi-
luting these values back into lh& hnem equation will give two
corresponding values of x.

(7) Three special relalzoygs There are three special ratios
that the student bhouldlml?s thoroughly familiar with. "These
are /A, A/0 (A #Oi\\ando Q.

Let

0/A4 = x,1.e. B w Ax. There is only one value of x that will
vield zero W}leli“multiplied by A, namely zero itself. Hence

’\ » _{}. _
(a) .s\ 4 =0
Let,

G = x, i.e. 4 = 0x. There is no value of x which, when

m\ltlp]md by zero, will yvield A. Division by zero is impossible -

or yields infinity. Hence

Let 0/0 = x, i.e. 0 = Ox. Any number z will satisfy this
equation. Hence

{c) g is indeterminate.

Q.
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3. Geometry.
(1} Radian measure.

(a) A central angle, subtended by an arc_equal in length to
the radius of the circle, is called a radian (Fig. 1).

/4y ! radian [ $.Y

Fiz. 1 Kig,.’ 2
(b} 1f r is the radius of a circle and if :B,\}i‘ieasured in radians, i
the central angle subtended by an a:q;\S", then (Fig. 2)
S =10
(¢) Relation between deggég ‘measure and radian measure:
360° = 2 7 radians ;1 revolution (or circumference).

(2) Mensuration f{ffmulae. Let r denote radius; 6, central
angle in radians; §)arc; 4, altitude; b, length of base; s, slant
height; A, area’af\base.

CIRCUMFERENCE AREA VOLUME

(@) Circle ™ 2wy 77
(b) Cirtlitar sector S=1m Ll
{c) \Triangle 1 bk
(d), Trapezoid 2t + Bk

o8 Prism Ak

~\/ () Right circular cylinder

4 (Imiting case of 4 prism) 2mrh Ak =
(g} Pyramid 1 Ak
{(h} Right ciredlar cone

_ (limiting case of a Pyramid) Trs = qrver + it Y arth
(i) Sphere 4 oy B
{) Sl;nﬂar_ areas are to each other as the squares of correspondin
ditensions.

(k) Similar volumes are to each other as the cubes of correspondin!
dimensions.
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(3) Pythagorean theorem. The square on the hypotenuse of
any right triangle is equal to the sum of the squares on the two
sides: ¢t = a* + b% (Fig. 3).

(4) Definitions.

{a) A median of a triangle is a line by
joining the midpoint of a side and the
opposite vertex.

(b} A rhombus is an equilateral par-
allelogram.

{c} An isosceles trapezoid is a trapezoid in which the non-
paralie! sides are equal in length and make equal 1nterior‘ \angles
with the base. '\'

(d) A convex polygon is a polygon each jnfepior angle of
which is less than 180°.

a A .
Fic. 3 o\,,\

N
4, Trigonometry, \
(1) Definsisons. R I
. ordinate £ _ dist
(a) sinx = distance’ KN (d) cscx = ord’
bscissa o - dist
b =2 ¥ =
(b) cos x distance’ “,\ (€) secx abs’
ord N\t abs
C = — == —
{c) tanx abs \ ) cotx ord
Il “;I II I
T s PN
A\ 4 Aﬁ’d °'1Bl——
“‘ abs {—) abs
O m v TI1 W
\ 4 FiG. 4 FIG.5
11 1 II I
(=) abs /| }x y abs =
- E
5 iy :’
m LY 1 v

Fig. 6 Fre. 7
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(2) Signs of the lrigonomelric funciions.

" Quavrant || siv | cos | tan | csc | sec | cot
I T e T T
1T N e T e
I - -1+ 7 -] -+
v ] =] -1+ - O
. . Oy
(3) Functions of special angles. N\
Quap-|| De- |Rant- % AN |
RANT ||GREES| ANS SIN o0s TAN r CSC{,{.' SLEC COT
0,360 0,%‘ 0 1 0 &) | 1 o
I 30 Fr ) 2 V3] 3VEINE 23 V3
45 | x| 3VE| 3VE] LW V2 2 1
60 | x| V3| % A3 B 2 L
90 | w1 0 Row 1 o 0
I 120 | 3w | 3VE| RN V3 V3| -2 —143
135 | x|l 3VE|aE| -1 | vE | _va |1
1850 | §x || 3 P3VBI-I1v3| 2 —3v3 | —v3
180 | = . -1 0 W -1 %
1 ’ 210 | Fx [y _| VL avE| -2 2v3| V3
i 225 ‘E‘QC*%V§ ~-3v3l -3 | =3 1
| 240 | a0 —3VE | 4 V3 || -3v3l—2 13
2904 & x ‘»1 10 | = 1 © 0
v p A Ee ) —5VEl 3 | vE i svE] 2 | 33
} SI5 | 3w ) —3vEl 1vE | 1 I} —VZ | V2 | -1
§ 7330 | a1 V3| —1v3 | 2 53| i
| |

.':’. VB = 1.414, %‘\/_ = .707; V3 = 1.732, }\/3 -~ 866, _}\/5; = 577

(&) Fundamental identities,

: 1
() sinx = -5 _ 1
CSC X (b) COS x¥ = sec x:

1 .
¢} tanx = oty (d) tanx — S0 %

(€) sin®x + costx = 1,

cos ¥
f 1 2 — 2
(@) 1+ cot’ x = coct g, () 1 +tan?x = sec? %,
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(5} Reduction formulae rule:

ist. Any trigonometric function of the angle (k% + a)

is equal to ( &) the same function of «, if % is even, and is equal
to (+) the cofunction of « if % is odd.
2nd. The 4" sign is used if the original function of the

original angle (k g + a) is plus; the *“ —" gign is used if the ~
original function is negative. The sign of the original functlon

of (k 721- * a«) is determined by the usual quadrantal conventispns

To summarize: ¢ “f’«:
Same function of & if’fe is even;
J cofunction of 4% % is odd.
Any function of (k 5 + a) = + { Use sign of orlglnal function of

{k +a)

(8 Functions of the sum and deﬁ'er,ence of fwo angles.
@ sin(x + y) = sinxcosy *"CDS xsiny,

(b) cos (x + ¥) = cos x cos P + “sin x sin ¥,

tan x6 tan Y.

1 +i~‘t\an xtany’

(7Y Mulliple anglej\rmufae

(@) sin2x = 2.§1nxcosx
(b) cos 2 x ;—\c03~x —gintx =2¢cos2x — 1 =1— 2sin’x,
& 2tan x

{c) tan\’%{c‘..& p——

Y 1 —cosx
R e

x4+ cosx
B tan X \/l—cosle—ccmxz sin x
@) tan 1 +cosx sin x 1+cosx
(8) Sum and product formulae.
(a) sinx 4 siny = 2sin 1x + ¥) cos 3(x — ),
(b) sinx — siny = 2cos 3(x + ¥) sin 3(x — ),

{c) tan (x + 3 =
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(c) cosx + cosy = 2cos (x-l—y)cosg x — ¥},

{(d) cosx — cos ¥ =—2sml(x 4~ ¥) sin 2x — ),

(e) sinxsin ¥ = 1(206 (x =3 — §C05( + ¥,

(f) sinxcosy = &sin(x — ) + Lsin (x + ),

(g) cosxcosy = %cos (x — 3 + 3008 (x + ).

(9) Formulae for plane iriangles. Let a, b, cbe sides; 4, B, C,

opposite angles; s = ‘%iﬁ, semi-pesimeter; \

C-a6-Ds-0
3 .
radius of the inscribed circle; R, radius of thef c;rcumscnbed
circle; K, area. ) X s\
a ¢ v,
. smd~ sinB  sinG = 2R,
(by Law of cosines: a* = 5 + ¢ —.8.5¢ cos 4,
a + b tand (A + B)

a) Law of sines:

{c} Law of tangents:

tﬁn (A - B)
(d} Tangent of half angles’cm 1A= . 1 7
(e} Area: S
=1 : A abr
K = 3 absin C =9 3(5 —a)s —b(s —¢) =715 =55
(R - iR
<"
O
&\



PLANE ANALYTIC GEOMETRY

CHAPTER I

FUNDAMENTAL CONCEPTS D

5. Introduction. Analytic geometry, or the analytic treat-
ment of geometry, was introduced by René Desc,ai\‘t,es in his
La Géoméirie published in 1637. Accordingly, aftér the name
of its founder, analytic or coordinate geometryis\dften referred
to as Cartesian geometry. It is essentially amiethod of studying
geometry by means of algebra. Earliermidthematicians had
continued to resort to the conventional methods of geometric
reasoning as set forth in great detail\by Euclid and his school
some 2,000 vears before. ’I‘he Iremendous advances made
in the study of geometry smce the time of Descartes are
largely due to his introductisn of the coordinate system and the
associated algebraic or analytlc methods. And, conversely,
the use of analytic ge m\étry in the study of equatlons has been
of direct benefit to alge

6. Rectangular\ Coordmates Consider two perpendicular
lines X'X and\Y’Y intersecting in the point O (Fig. 8). X'X

s\ Y
pz("z,ﬁﬁ)
¢ \'. y
R, v,)
v A(5,2)
Y ol X Plak)
I o©,0 ’
B(—2,—2 '
( 2 Cla,b) / - X
Yf
FiG. 8 Fic. &
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is called the axis of x, Y'Y the axis of , and together they form
a rectangular coordinate sysiem. The axes divide the plane into
four quadrants which are usually labeled as in trigonometry.
The point O is called the origin. When numerical scales are -
established on the axes, positive distances x (abscissqe) are laid
off to the right of the origin, negative abscissae to the left;
positive distances ¥ (ordinates) are drawn upwards and negative
ordinates downward. Thus OX, OY have positive sense (or\
direction) while 0.X*, OY" have negative sense.

Clearly such a system of coordinates can be used to desCibe
the position of points in the plane. By going out +5(lits on
the x-axis and +2 units on the y-axis, for example,the point A
is located. The point A is said to have the pajrjef niumbers 5
and 2 as its coordinates, and it is customary to-write A(5, 2) o
simply (5, 2). Similarly B has the coordifates (=2, —3) and
11533 in the third quadrant. It is evidenisthat for the point P
pictured in the second quadrant, thex-toordinate is negative
and the y-coordinate is positive. Wetill may write Pi(x1, Y1)
letting x; itself include the mings.Sign. P, is a point in the,
first .quadrant with x, and y, both positive; for the point € the
abscissa « is positive, the Ordinate b is negative. The coor-
dinates of the origin are.(0,0).

The fundamental prigeiple here is that there is a one-to-one
correspondence b%hgeén number pairs and points in the plane:
to each pair of \Jimbers there corresponds one and only one
point and, conversely, to each point in the plane there corre-
sponds oney gﬁd only one pair of numbers.

A Carte\swn coordinate system may also be established by
hmean&of two non-perpendicular lines as in Fig. 9. The point P

‘ tl?;ﬁ: -a;?;n:fﬁls ‘; 3i-;1d mb ‘?Vher((ai @ is measured in the direction of
G & pone 1easure in _the dlre_ctlon of the y-axis.
 bat i R gular system is occasionally very useful,
general it leads to technical complications in formulae.

I()SE;G t)he equation of a hyperhola referred to its asymptotes,

P E- DiStE;‘)nCe bEtw:een Two Points. Let Pi{x;, ) and
PZJ bef’) € two points lying in the first quadrant and dra¥
1, &7 parallel to the coordinate axes, {See Fig. 10.) BY
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simple subtraction of abscissae, P = x; — xy; similarly,
subtracting ordinates, @P, =y, — »,. Making use of the
square on the hypotenuse of right triangle P,QP,, we have
(see Pythagorean theorem, p. 5)

(1) PP = (x; — 2" + (3: — 31)°
and the positive distance PP, (call it d) is given by
(2) d =V (% — %:)* + (32 — y1)%
Y pz("zy)’z}
P2 laty,y2) E —y S
; Py(x1,y,) e
; ————4 2
¥z ~y| FTE X R L.
i N '
b e
R ®1 ¥z XYy
Pulxysy) Q{
Fic. 10 WO Fie 1

The same formula holds true regarcfless of the quadrants in
which the points lie and regardiess of the order in which the
points are taken. For exampie the positive distance RP; =
X1 — xy = —(x2 — x1) and she positive distance RPy = y» — 31
since these distances are«fneasured in the positive directions of
the axes, But (x; —\mﬂ = (x, — x1)? and (2) holds as before.

Mustration. Find :the distance between the two points (3, —1),
(=4, —2). A
Solution, Tﬁkmg the points in the given order, we have

A avIogrr (2P
A\ —xf50 = 5V2.
\Qr again, reversmg this order,
N/ VB FA T (1 +2¢
= 5v2,

8. Directed Line Segments. Although the distance between
two points is usually considered positive, yet it is at times de-
sirable to associate with a line segment direction or sense. This
amounts to attaching a plus or minus sign to the segment ac-
cording to some convention. But since there is little agree-
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ment among authors on this point we shall assume that if sense
is important in a particular case it will be specified by the order
in which the end points are given. Thus, in Fig. 11, if P.P,
is the given positively directed segment then PP, has the nega-
tive sense and we write PP, = —P,P,. The direction of a
line, if essential to the immediate argument, will be denoted by
the order in which two points on it are specified. Thus if RS
is the positive direction SR will be the negative. A~
The context of the material under study will usually makéiit
clear whether hoth distance and direction are to be congiflered.

'\

9. Projections. The projection of the signed segment A;4,
(Fig. 12) upon the line L is, by definition, the sighed segment
P,P; cut off by the perpendiculars dropped upon L/from A and
A;. The projection of 4,4, upon L is P,Rthe proiection of
AgAa 1 P zP ER

PN\ FiG. 12

As iz;,,{n}chanics we may think of 4.4, 4,4, as being free
vectorgathe vector sum of which is A,4,.  With this definition
ofgg&or sum in mind we note that the sum of the projections

n :0{~41A2 and A.4;, upon L is equal to the projection of the sum
< vAids upon L. Thisisa geqeral property of projections regard-
less of the number and orientation of the segments, 1If the
mdividual segments, or vectors, represent forces, then the vector
sum represents the resulian! force, and if the vectors form a
Zl(;sid polygon the resuliant is zero and a state of equilibrium
1518,

The projections of a line segment upon the axes, or upon lines

parallel to them, constitute important special cases. For ex-



i
|
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ample, in Fig. 13 below, P8, or @R, is the projection of PP, in
the x direction while P@, or SR, is the projection of PP, in the
y direction.

10. Point of Divigion. Given a directed line segment such
as P P; in Fig. 13; to find the coordinates of the point P
which divides PP, in a given ratio 7,/r.. Let P have the coor-
dinates {x, ¥) which are to be determined. Sense is important
here and P must be located so that P,P/PP. = 11/7.. .

A, ¢
2\

FiG., 13, ’

Now, by similar triangles,‘r(.;é — x)/711 = {xg — x)/7e, [rom
which it follows that 8

1 L mar A

) ; \\x 1+ T2

Slmﬂar]_y K ‘:

2) 2NOT ) Jyr
(N 71+ 72

S

For the midpoint of the segment P,P, the ratio 7,/r. must be
unmily; he}roe 11 = 7; and (1) and (2) specialize to

3O O e ot IR U il )
(3)\3 » =g, F=o
Formulae (1), (2), and (3) have useful physical interpreta-
tons.  Tn (1) and (2) x and y are the coordinates of the center
of gravity of masses r, and 7, placed respectively at P; and P..
If the masses are equal, the center of gravity lies haifway be-
tween them as indicated by (3).

It is of further interest to note the positions of P for various
values of the ratio 7,/r,, If this ratio is zero, then P coincides
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with P, and if this ratio is a positive number, P is an internal
point of division, As 71/r:—+4-00, P—Ps For —eo <r i1«
—1, P is an external point of division (in the direction P,P,)
with PP positive and PP, negative. For —1 < /7, <0,
P is an external point in the opposite direction with PP nega-
tive and PP, positive.

Iltustration 1. Find the coordinates of the midpoint of the seg-
ment Py(3, 7), PA—2,3).

o 342y _1 __ 743 _ )

Solution. ¥ = — 2, y=—p = 5. \

= N\

Ilustration 2. Find the coordinates of the point,, P w’h1ch divides
the segment P,(~2, 5}, P9{4 —1) in the rath«uf (@) r./r. = §
) n/re =—2; () 1/7s = —3.

C(—5,8) 4¥ N

Pi [(—2,6) \°

’{“z{\
\\s,l
\<&"
x\ Fig. 14
\“\‘.
S'Qﬁutu)n (a) X = M = 1_4_,
11 11
.'\"

O - BB + (=1)(6

) d 1i 11

)5 = AL @D

(M
-1
© x = 526G+ W(=1) _
: -
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Note that, in terms of positive distances, PP, = P,B = §v2
and CP, = } P,P, = 3V2. These are in agreement with the
values of the ratios given in (b) and (c).

11. Inclination, Slope, Direction Cosines. The angle 0(0 < ¢
< 180%), measured counterclockwise from the positive x-axis
to a line, directed or not, is called the #nclination of the line.
The tangent of this angle, tan 6, and generally designated by
the letter s, is called the slope of the line. It is evident froth
Fig. 15 that the slope is given by R, \)

(L Slope of PPy = tan§ = m = 22— 9L .\~

Xp — XS
This [ormula is independent of the position and efdér of the two
points involved, ’

ad

¥y P{Q’:‘k)
-
:Yz—}h
________ ]
%6 . ' 3
9\
XN Fe 15

N\

Although tan@i$ a most natural trigonometric function to
use in describ(ng the general trend, or steepness, of a line, it is
not the onhyodne that can be used. Indeed, we need not restrict
Ourseh{qsgto“ the one angle 6. Let the given line have an estab-
]ishedj sense PP, (Fig. 16) and call by « and g respectively the
L@ direction angles made by the positive direction of the line
‘and the positive directions of the ages. By definition A = cos «
and p = cos g are called the direclion cosines of the line, Any
two numbers proportional to the direction cosines are called
dwrection numbers of the line. Thus ¢ = kA = kcos o and
b= ku = kcos g are direction numbers. A sensed line has
only one set of direction cosines since « and g are then unique.
If the sense of a line is reversed the angles « and 8 are replaced
by their supplements, so that a line without sense has two sets
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pz(xz: ¥z)

¥z —¥1

180° —

T L

——pe——— Pi(x,, O
Friplupo 1(x1,v1) <\

FiG. 16 A .
i ' |
of direction cosines: cos«, cosg and costlR0® — &), cos !
(180° — 8), ie., N\, pand —x, —y, corresporiding to the two
directions of the line. In this case we call &ither », wor —», —z
the direction cosines. Note that eithet )\ or u (or both ) can be
negative numbers depending on the'sénse and general trend of
the line. \\

Directly from the figure we-dge that

() CoS o = xig A cos g = yz—;-llr
whence .imx\

&
{3) %3 7>}'=d(:08a, Yo — ¥1 = dcos .

Thus the diffefefices in the respective coordinates of any two .
points on alline, namely x, — %, and P2 — 9, are direction |
numbers-f the line, the proportionality constant being the
distaJ}rQ\between the two points.

Upon squaring and adding equations {2), remembering that
Mdzl\.;'—’ (xy — x1)? 4+ (y: — )%, we obtain
N4 Cos?a + cog? B = 1,

This canalsobe writtena® -+ 42 — 1 andisan important identity
connecting the direction cosines of a line. The direction cosines
of a line paratlel to the x-axig are A = 11, g = 0; the direction
cosines of a line parallel to the y-axis are A = 0, g = +1. No
distinction is made between a Jine and a line segment.

If @ and b are direction nymbers of a line,a = krand b = kp.
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Since »* + »* = 1, it follows that e*/k* + 02/k> =1 or #* =
¢ + b, Thus the direction cosines themselves are

6) v G R
Ve Vg

Throughout plane and solid analytic geometry much use is
made of the notions of slope and direction cosines and the stu-
dent should make every attempt to master these ideas before
proceeding. He should also be thoroughly aware of any dif-
ferences that may exist between the basic assumptions made’)
by the author of this Qutline and those of the particular gnithor

he is following. N

Hiustration 1. Find the slope of the linc joining the pafitis Pi(1, 2)
and P.(—5, 3). QO
Solution. _=n_ 3=-2 1
olution m pram— e x6\\
Illustration 2, Find the direction cosines of"Lﬁe‘éensed line Pi(1, 2),
Py(—5, 3). O\
Xo — X1 = _5—1 - 6_
d w37 V37
- ¥ ~:'.'3. "—_2 _ 1 .
@ SVE T v
Hlustration 3. Direction.m;ﬁnbers of a given line are -2 and 3.
Find the direction c@es’
; \ —2 2
Solution. A = 4 = =_ ,
Y&+ V(-2 + ¥ V13
H¥ b _ .3
N Var + B2 V13
These I,T‘k'i’}aﬁlso be takenasx =+2/v13and p = —3/v13.

Solution. A = cosa =

po=cosf =2

12{Parallel and Perpendicular Lines, If two lines are
parallel they have the same slope, and if in addition they have
the same sense they have the same direction cosines. Some-
times lines which are parallel but which have opposite sense
are called antiparallel; antiparallel lines have the same slope
but the direction cosines of the one are the negative values of
the direction cosines of the other.

If two lines L, and L., are perpendicular the slope of one is
the negative reciprocal of the other. For, from Fig. 17,
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m, = tan 8, = tan (90° 4 8;) = — cot &,
1
T —tané,
Hence
(L
Y
O\
RO N
A

F16. 17 (N7

The student should check the t:gigén'bmetry by making use of
the reduction rule (5), Chapter-I: _

The direction cosines Ay, gpand Xs, s, of two perpendicular
lines are connected by the'relations

(2) MBS Eps, =T
¢\/ . L, .
Tlustration 1. Find the slope of a line which is perpendicular to

the line joinitig P,(2, 4), Pa(—2, 1).
Solution, | The slope of the line P\.P, is

o) 1-4 3
\O" i sl |
I};E’r\efore the slope of a perpendicular Tine is
AN

Dlustration 2. Find the direction cosines of a line which is per-
pendicular to the sensed line P2, 4), Px(—2, 1),
Solution. The direction cosines of the directed line PP, are

hl =2 M1 = ‘—%.

Hence those of a perpendicular line {without sense) are

k?‘:‘i"i p2=¢%_

ERs
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13. Angle between Two Lines. The angle between two non-
iniersecting lines is 0° or 180° according as the lines are parallel
or antiparallel. In the case of in-
tersecting lines we do not calculate
the angle directly but compute in-
stead some trigonometric function
of the angle, generally tangent or
cosine.

I. Angle in terms of slopes. Let
#1; be the angle between two inter-

secting lines measured counter- 1
cockwise from line L, fo line L, N\
(Fig. 18). Since 8, = 0, — #; it FIc. ;8?? ’
follows that N

_ _tang, — fah;
1+ tan. Qtﬁn 6,

which, in terms of the slopes of the llnes y}elds

tan #;- = tan (§. — &)

m p — Kl \
1+ many ~:~’I"
The subscripts on 6, are put there* to emphasize that this is the
particular angle zs defined:.the angle from L lo L, measured
counterclockwise.  Since the lines may be designated in either
order, either one of th Kwo angles that the two lines make with
each other can be choe\n without guesswork [The tangent of
the supplementarv angle (180° — 612) is given by tan (180°—81.)
- m, — Wi \

1+ mlmr;l, D

1L Angl{xm terms of di- Y
?‘ecfzon ¢dsines. Instead of us-
mg the tangent function we

N the cosine, but here
it i best to consider the angle
8 between specified directions of
the two lines. Consider, then,
two directed lines L, and L.
with direction cosines | ST g

and R, 4, respectively (Fig. Ly
19). We have Fic. 19

(1) taﬂ flig =




o)
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cos 6§ = €08 (e + ag) = COS &y COS @2 — SN ay SIN @y,

It is left to the student to check, by his knowledge of trigo-
nometry, that sin @, = cos §; and sin @z = —cos fz. Hence

(2) COs 9 = thz + H1fia.

This result is independent of the position and sense of the two
lines involved even though the preliminary trigonometry may
vary somewhat. For the particular lines directed as indicate

in Fig. 19, # = a1 + «, but this relation is independent neither
of sense nor of the arbitrary labels L, L,. The student shonild
draw for himself lines in other positions, noting that R “general
¢ is always one of the forms

b=ty 0=a—a, 8=131J_r62,"{:¥82—ﬁn-

He should also satisfy himself that, regardless of the inter-
mediate trigonometry, formula (2) alwaysobtains.
The acute angle between two undlrec,ged lines is given by

3) cos 8 = [ Ao PNdriss |-

If ¢ =90° cosd =0, Hen-;:e,fufrf::m (2), the condition that
two lines be perpendicular is that

(4) AR s = 0
or, what is the sameitléihg, that
®) “8 @ + biby = 0

where @, &, and {2, by are direction numbers.

mustratx@ . Find the least angle of the triangle A(1, 4
B(+84~1), C(0, —6).

Sol n. We first compute the slopes of the sides AB, BC, CA.
wThese are #igp = &, mpe = —1, mey = 10.

(“Next we must make use of {1}, taking care to combine the slopes
properly so as to get interior angles.

10 — & 55
tan BAC = -———%8_ = =*.
1+ 10(58) 56
Similarly tan ACB = 1% and tan CBA = 11.
The angle at A is therefore the smallest.

Dlustration 2. Find the angle between the directed lines Pi(1, 3
Py(—4, —3) and P2, 0), P,y(-5, 6).
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Solution. By slopes. The angles#, in question is the counterclock-

wise angle from PyP;to PiP.. Now mppe, = £ and mpp, = — §
Hence
tan . 8+ =— 72.
1+ E1(—%
By direction costnes. The direction cosines of P,FP,; are
_ =95 il
V6l VBl
and those of P,FP, are
_ =7 u 6 O\
2 = == A= - =" s
v 85 v 85 N\
Therefore A

5 7 6 6 AN ¢
f={— 2 )= - 2 N 7, . il
€8 ( x/ﬁl)( \/85) +'( \/61)(\/85) ~k<€fx/85
Iustration 3. Show that the two lines PIK:,S) Ps(1,1) and
Pi(4, —-3), Ps(2, 0) are perpendicular. Lo

Solution. By slopes. Since the slopes | arE % and —£ respectively,
the lines are perpendicular.

By direction numbers. We may take as direction numbers the
differences in the respective cogardmates This yields

@ =6 b =4 NG =2 b=-3
and applying (4), we ha\%
aas + B\bs = (6)(2) + 4)(—3) = 0.
Therefore the hnes are perpendicular.

14. Area of ’I‘nangle Consider the general triangle whose
vertices are\ A\(xl, ¥1), B(xs, ¥3), and C(xs, ys). Project AC, CB,

O gy Clxpry,)
\\/
/ B(leyZ)
t
1
| E
Al 1:}"1)i IIY3 Iyz
| 1
i ! ! X
D X3 — X3 E ®xz=x3 F
i Kz X1 !

Fic. 20
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AB upon the x—aﬁs, obtaining DE, EF, DF respectively.  Then |
(Fig. 20)
(1) Area ABC = Area ACED + Area CBFE — Area ABFD.

Since the area of a trapezoid is one-half the sum of the parallel
sides multiplied by the distance between them, (1) becomes

' (2) Area ABC = F{(31 + 1) (% — x0) + (05 + ¥ (0 — %)

— (3 + 3} — 2}, O
= G212 + X2¥s + XaY1 ~ Xg¥e — Xa¥1 — ls{s)
upon simplification. £\
This can be put into a very compact and easily, remembered
form by making use of determinants. (See Determmants

p. 2. The result is AN\
¥1 M |
3) Area ABC = } xz Vs \1
&3‘

- Caution: The area will be positwe by this formula if and only
if the vertices are chosen so that) as the perimeter is traversed
in the order A, B, C, the areadf the triangle lies to the left (the
traverse is counterclockmse) *Ifin a given problem the answer
turns out to be negative, it merely means that the wrong order

(clockwise) has been, Qhosen Attach a plus sign to the final

answer in an
y c%\

Tustration 1\Find the area of the triangle (2,1), (5, —3)
(=8, 0), &

Solutl"c{q} ’I‘akmg the order as given we have

N 2 11
JMBrea =% 5 -3 1|=1—-6-40_—8 24 —5—0),
N -8 01

23
LA,
The area is 47 square units; the order was chosen clockwise.

Hiustration 2. Show that the three points A(l,5), B, —1h
C(—4, 11} are collinear (lic on a line).

Solution. By slopes.
Map =—% = Mpe = Maq.
Smce these slopes are the same, the points are collinear,
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By distances.
AB =25 + 36 = V61,
AC =25 4 36 =vBl,
BC =~100 1 144 =244 = 2VB1.

Since AB 4+ AC = BC, the points are collinear.

By qrea.
\ 1 5 1
Arca ABC = 3! 6 —1 1|=1(—14+66—20—4-30—11),
4 111 \
= 0.

O\
Since the area of the “ triangle” ABC is zero, the points do nqt\foﬁn
a triangle but instead lie on a straight line, 3

15. Applications to Elementary Geometry. Of thie proposi-
tions of plane (and solid) geometry, many d¥e)amenable to
direct treatment by the methods of analyﬁ\c, geometry. The
fandamental properties of a geometric cofffiguration do not in
any way depend upon a coordinate syste}n; they depend upon
the interrelations of the component, garts of the figure. Since
this is true, a given problem can offen be greatly simplified by
the proper choice of axes. Of cBurse care must be exercised in
choosing axes so that there will be no loss in generality. For
example, if Lhe propositionfelates to a general triangle the x-axis
can be made to coincide with one side of the triangle with a
vertex at the origin % But then there js no further freedom of
choice: the y-axis(Cannot be passed through the third vertex
since otherwisenffié triangle would not be a general triangle but
would be a right triangle instead. (We assume a rectangular
coordinate(System and not an oblique one, although this is pre-
cisely oi@\place where oblique axes are most useful.

Q@e‘axes are chosen it becomes Y
ReCessary to translate the geometric

ta into coordinates and equations
$0 that the work may proceed al-
gebraically. .b) ol ke

Nlystration 1. Prove that the di- ol
agonals of a rectangle are equal. AT B,

Solution. Draw a rectangle ABCD (0.0 (2,0)
and choose axes as in Fig. 21 Fic. 21
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R v of2tol. By formulae (1) and

——

Then write down general coordinates of the vertices, remember.
ing that the figure is a rectangle. The length of either diagony
then is va® 4 ¥, which proves

the proposition. Y
Hlustration 2. Prove that the di-

agonals of a parallelogram bisect (a.b) (akch)

each other. N —
Solution. Choose axes as in Fig. :/\,,\/’

22, letting the coordinates of /5 N/ :\

three vertices be (0,0), (g b), 00 oD

and (¢, 0). Note that the coor-
dinates of the fourth vertex are
then fixed; they are (g + ¢, b). £

D
By formula (3), p. 13, the midpoint of diago'ﬁ:ﬁ 1is (“ ; 3 g)
the midpoint of diagonal 2 is (a ; £ b -» Since these are the

coordinates of the same point, this Qofixt‘lies on cach diagonal and
the diagonals hisect each other. A\

F1G, 82,

Mustration 3. Prove that thyfg‘;)édians of a triangle intersect ina
point 2 of the distance aleng one from a vertex toward the

opposite side, 3

Solution. Axes and{todrdinates ¥ Ru(be)
are chosen as in Kig 23; /
midpoint of i@, Ry(a/2, 0), /)
midpoint;gf;aiﬂ; is P, (“ '2F b 5) Q; /,/ P,
midpfn\i;g;;of' RPyis Qub/2, c/2). /7\{1/
\phint P, 2 of LN
.'%ton,diﬁéestgfimgﬁ PO G

16, 2
{2}, p.13, the coordinatesof P are Fic. 23

~oth o o
i (x o3 e g) Similarly, the coordinates of the point &

which s § of the way from @, 1o Q,, are @ (L b g) and those
2

. N b ¢
of R, which s 2 of the way from R, to R, are R (E%;, 3).

Since P, 9, R all have
the proof of the
medians is the

> the same coordinates, they coincide and
Proposition is complete.  (The intersection of te
centroid of triangular area.)
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Illustration 4 Prove that the diagonals of a rhombus are per-
pendicuiar,

Solution. Choose axes so that two vertices are at A(0, 0) and
B(a,0) (Fig. 24). Now a rhombus is an equilateral paral-
lelogram and the coordinates of

- Cand D must be such that AC = ¥
CD = BD = AB = a. In the
figure we have purposely omitted "\
writing the coordinates of C and
D to emphasize that extreme
care must be taken in doing so.
Since AC = g, the coordinates
of C may be written in terms of

@ and 8, the inclination of AC, G ' \ 560 X
thus: Cia cos 8, a sin §). Simi- \J s
larly for D (a + accs 8, asinfh), WO FiG, 24
Then D
_ asin# Qm g
WMap = =\5

a+ acosd _"].'—f— cosfl

(Incidentally I _T_m—L tan 2'z’lncT the inciination of AD is 6/2,

which proves, In passing,? that the diagonal AD of a rhombus
bisects interior angle {{AC 7 Again

— asind o\ _sinf _ _sinf  cosd+1

fzcosﬁ\é\a cosfl —1 cosf—1 cosf+1
_sinffeos® + 1) _ sind{cosd + 1)
\COS -1 — gin* @
(eosg+1 -
\_ sin #
P\ 1 . .
Smce Map = — P the diagenals are perpendicular.
B

o~ mustratlon 5. As an exercise develop the formulae for {a) distance
\ ) and (b} slope with respect to a system of skewed {(oblique) axes.

Solution. (a) Let the axes make an acute angle 8 as in Fig. 25.
The fundamental triangle PP, is not a right triangle but has
legs £, — x; and y; — » parallel to the axes. Theangle P\QP, =
180° — . We now make use of the law of cosines PP: =
P@ + QP — 2(P1Q)(QPs) cos (180° — ). (See (9), (b), p. 8)
Calling d = P,P, and noting that cos (180° — §) = — cos f, “_JI;_% get

1) d=vVixe — 2+ 20x — 2y — ydcosh + (¥ — 3P
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P2 (xza)'z )

rd
SYTY
1807 =F % |

Y ’_\9 iR

¥p—%y S Qly,—y}cos §
-

i (yzy,)sin®

X

FiG. 25 p \:\

7'\
I case # = 90° the middle term drops out with cos 90°% =0 and
this formula reduces to that developed previously for fettangular
coordinates. O

(b) Project &P:in the x direction into @K and in'“a\direction per-
pendicular to the x-axis into BRP,. It is clearthat QR = (30— 1)
cos® and RPs = (v, — y)sinf. Then ghg'élope of PyP; will be
given by ( yei 8\

_ ¥ — vy sinf/

@ " (xz — x) + (y;.,—’ W1} €os 8
These formulae are more comphicated than the corresponding
ones in rectangular coordingtéss  The concept of slope naturally
mvolves perpendicularity, and distance is most simply computed
when the fundamental/friangle is right,

Finally we point out thz“it})blique axes and formula (2) could readily
be used to proye ‘tite proposition of Illustration 4, Oblique axes
could be choserso that the vertices of the rhombus are A(0, {1,
B(a, 0), CQ,@), and D(a, a), which is simpler than with rectangu-
lar axes,, {Then the slopes of AD and BC are ag already deter-
mined.and the work proceeds as before.

16. .',A%uracy in Drawings. Throughout his study of analytic
geql\ﬂetry the student should make every attempt to make care-
oflgj,,and accurate drawings to accompany his algebraic work.
v ﬁgu_re .that is reasonably exact will often lend aid to the
analytic imagination whereas a poorly drawn figure may lead
the student to make inaccurate deductions.

EXERCISES
1. For the triangle A(1, 3), B(~2, 1), (D, —4) find
(@) Distance BC. Ans. V29
(b} Slope AR. Ans. %
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(c) Slope of a line perpendicular to AB. Ans. — 4.
{d) Midpoint of AC. Ans. (3, — 3.
(e) Coordinates of the centroid. Ans, {— 1,00
L . . . -3 -2
irection cosines of the directed s A L s .
i D n o ide AR Ans vVis Vi
(g} Slope of a line parallel to AC. . Ans. 7.
{h) Angle ABC. Ans. tang = L2,
(i} Area of ABC. Ans. 12 sq. units.

2. Prove the [ollowing theorems by analytic methods:

{a) The midpoint of the hypotenuse of a right triangle is equidistant
from the vertices. “\

{b) The line sepment joining the midpoints of two sides of a trungle«
is parallel to the third side and equal to one-half its length.

{c) The lines joining the midpoints of the sides of a tnangle dmxde it
into four equal triangles.

{d) The distance between the midpoints of the non- parall&l mdes of &
trapezoid is one-half the sum of the parallel sides\ N\

{e) The diagonals of a trapezoid are equal if and oQ} if the trapezoidi
is isosceles.

() The line segyments joining the midpoings™ Bf adjacent sides of a
quadrilateral foom a parallelogram. O *’

{g} The sum of ithe sguares on the mdcg‘of q parallelogram equals the:
sum of the squares on the dlagong}g



CHAPTER il
EQUATIONS AND GRAPHS ~

17. Basic Definitions. Numbers that can be plotied as
distances from a fixed point on a line such as the(¥-axis are
called real naombers. Examples are 2, —8, 0, Vs 1f a and
b represent real numbersand ¢ =v —1, thena + % s a complex
nwmber. A complex number is the (algebra}e) sum of a real
number g and a pure smaginary number bN"The two numbers
a + ib and ¢ — ¢b are called comuga{e\\somplex numbers. In
general we shall be dealing wholly. ‘w’tth real numbers. Any
giverr number, real or complex, 11-‘. a constanl, Sometimes Wwe
do not wish to specily what,th€ particular constant is and
indicate a general conslant bi,r any one of the letters ¢, 4, ¢, =
Such constants are sometunes referred to as parameters.

The absolute value of 2 real number @, written | ¢ |, is the
positive magmtud&&f a. Thus!6, =6, -7 =7

A varigble iscal guantity to whlch arbitrary values may be
assigned. Let x ) such a variable and let the guantity ¥
depend upon: %, We call y a function of x and say that x is the
independeih “variable, y the dependent variable or funciion.
Abbres{@ted these statements are written

Q y = 1.

\ThlS is read ““y is a function of x.”” The value of the function
vat the point x = a is written f(¢). Many notations are used
to indicate that one letter is a function of another: y = g(x
w = F(t), p = y(6), etc. If a variable z depends upon two
mdepe‘ndent quantities x and v (as in solid anaiytic geometry),
we write z = f(x, y).

A function ¥ = f(x) is real-valued if v is real when x is real
If y is complex when x is real, v is said to be complex-valued
If therfz is but one value of y for a given value of x, y is said 10

be a single-valued function. If, for a given value of x, ¥ ha

S 28
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mere than one value, y is said to be muliiple-valued. The
function f{x} 1s periodic of period P if f(x + P) = f(x). Usually
it is assumed that P is the least number for which this identity
holds.

A function fix) is said to approach 5 as a limit, when
approaches g, if the value of | f(x) — & | becomes and remains
less than any preassigned quantity. This is usually written

imf(x) = b
and is read “the limiting value of f(x), as x approaches\,’
equals .7 A function f(x) is said to be contsnuous af the pomt a
iflim f(x) = f(a), that is to say if the limiting value of €hé\func-

tion, as x approaches «, actually equals the valueéf"the func-

tion at the point @. For example the functign V(%) = xtis a

continuous function at the point x = Q sincedimd' x> = ¢ = f(0).
'L 2 )

Hlim f(x) = f(4) the function is said to be\discontinuous af the

boint a. For example the function j(fc},’ defined as follows, is
discontinuous at x = 0: f(x) = a\for values of x = 0, but

*

| J0)=1. For timx® = 0 Whetjeéls' fl0) =0, Or again the

& o{d

 function f(x) = 1,7 is disco'r;{ir‘l’l.ious at the origin since iim 1/x

EE ]

-~ does not exist (it is infinite)

A function is continibdus in an interval if it is continuous at
€very point in the inferval, :

A/
18 Equationg’w‘ Ii a function of a single variable, F (x_),
18 et equal tg'ero, the relation F(x) = 0 is an equation. This

-~ quation ju%dses a condition on the variable x which then can

~ I5Sume only certain values. |[We assume that F(x) is not iden-
tlcg,lj?;zefo_}_ For example, if the equation is @ + bx 4+ ¢ = 0,

S —b+VE —dac
Can take on only two values, namely x = —Hg T

- fthe équation is sin x = 0, x can assume an unlimited number

of values of the form kx, where k is an integer. The values of x

- Which satisfy F(x) = 0 are said to be the solutions or roos of

€ equation. All of the real solutions of F(x) = 0 may be
epresented by points on a line, the x-axis. These POll}tS would
hen congtitute the graph of the equation in one dimension.
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For example the graph, in one dimension, of x — 2 =0
would be the one point located %k units from the origin on the
x-axis. It is also simple fo interpret x — & = 0 as a graph in
two dimensions, for x always equals £ and v can be arbitrary
since its value does not affect the equation. IHence every point
(%, @), regardless of the value of g, is a point on the locus which
is, consequently, a straight line perpendicular to the x-axis

through (&, 0). Thus the graph of F(x) = O in two dimenc;iong

will be a set of straight lines erected perpendicular to the x- ~axls,
one at each root of F(x) = 0. Similarly, in two dimedisiens,
v = k is the equation of the straight line perpendlculgi‘ to the
y-axis passing through (0, k) and F(y) =0 would epresent a
set of such lines,

If a function of two variables, F{x, 1), is set equal to zero the
relation Fix, ) = 0 is also an equation. NBit this equation
permits one of the variables to be independent whereupon the
other is dependent upon it and is therefdré’a function of it. For
example F(x, y) = O might be solvedfor y in terms of x, say
¥ = f(x), indicating that x was tobeConsidered the independent

and v the dependent variable., ’01" F(x,3) = 0 might be solved |
for x = g{3) with an obvmus interchange of independent and -

dependent variables. .

Consider that F(x, )\= 0 has been solved for y. We wish |

to give a geomefil.g.ihterpretation to the equation ¥ = f(x).
- Now if a valuepsay ., is assigned to x, then, if f(x) is single-
valued, there willbe determined a single value y, say y,. Another
value of x, 8ay”x,, will produce a value y,. If J(x) is multiple-
valued, the\re will be several values of y for a given x. In this
case \%Q.%lmply pair x with each y determined. In any event
the s feﬁl number pairs (xy, y;) which satisly y = f(x) may be
pLotted in two dimensions as points in the plane. The aggre-

“gate of these points constitutes the graph of the equation

¥ = f(x) or of the functien f(x).

This is one of the central problems in plane analytic geometry:

gz’ven‘a Junction y = f(x), to plot ifs graph or to represent it geo-
metrically. We sometimes say that the graph of f(x) is the
locus of f(x). The word locus, in general, carries with it the

idea of motien. Thus the curve traced by a moving poeint is
called the locus of the point.
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Of course there is much more to plotting than just putting
down points here and there. By a thorough study of the equa-
Hion much can be learned about the geometric properties of its
graph.  Such an analysis is one of the roles of analytic geometry.,

19. Discussion of Equations and Their Graphs. Inthestudy
of an equation ¥ = f(x) there are [our principal analyses to be
made in order to be able to piot the graph with confidence,
and some accuracy. These are a determination of the: I, irier
cepls; 11, extent; 111, symmetry, 1V, asympioies. O\

L Indercepls. 'The indercepls are the points where the durve
crosses the axes, The x-intercepts are obtained by setting
y =0 and sclving for x. Such a value of x — for #hich y, the
function, is zero — is called a zero of the functign(x); it is, of
course, a roof of the equation f(x} = 0. ThaéXintercepts are
gotten by setting ¥ = 0 and solving for y\\

Mustration 1.  Find the intercepts of the g%ph ofy=xt—-3x-2.

Solution. Setting y = 0 the roots of #* — 31 + 2 = 0 are deter-

mined as x = 1 and x = 2. Hence the x-intercepts are {1, 0)
and (2,0). Similarly settingx*= 0 we get ¥ = 2; hence the
one y-intercept has coordinates (0, 2).

IL. Extent. In plotting the graph of an equation it is useful
to know the extent of gegraph. The graph might or might not
be confined to finite régions of the plane. If the equation is of
the form y = f(x); the independent variable x can range from
—% t0 +o0, Buf the values of x in certain regions (intervals)
may lead to gOmplex values of ¥, and there would then be no
corresponding graph in those regions. Or again the y values
might béwreal but bounded in one direction so that no y would
exceedior be less than) a certain number M, in which case the

&raph would extend only throughout half of the plane. Obvi-
0¥ modifications in the discussion would permit these ideas
t‘_) be applicable to boundedness in the direction of any coor-
dinate axis, positive or negative.

Wustration 2. Discuss the extent of the graph of ¥ = 22 — 3 x + 2.

Solution. The independent variable x may range from —oo to 4-co.
To find out whether y is bounded we solve the equation for x as a
function of y.  We have
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which yields .
x_3iv9—4(2 — )
= 5 ,

=3+ IVIft4

From this it is evident that v is restricted to values not less than
—1 since, if ¥y <—% x would then be complex. The whole
graph lies in the upper half plane determined by the line through
(% —3) parallel to the x-axis. The point (> —}) is the minifabm
point on the graph. RS

N 3

Illustration 3. Discuss the extent of the graph of .thf;\equation
¥ = x(x — 1)(x 4 3.

\

Solution, First note that for a given x there afe‘two values of 3,
namely +y and —y. The right-hand side6f’the equation must
be positive since the left-hand side is ‘always positive. This

_ immediately tells us that there is no,gast’of the graph in the re-
gions for which x < —3 and 0 < a %\]:. Asx — boo (read *“as
x approaches infinity ™), » — £&0\&8 can be seen directly from
the equation. Unfortunately, the quadratic equation methods of
Hlustration 2 are not readilyextensible to this present equation,
so that we cannot easily determine the extent of y in the interval
—3 <z < 0.- But wémay reason as follows: for x = —3 and
x =0, ¥ is zero; apd for no x in the interval —3 < x < O will ¥
become infinite, (“Therefore ¥ is bounded above and below. (By
advanced methods of the calculus it can be shown that the maxi-

mum ang; minimum values of y are -+ A fﬂ)—j%m respectively

.an(’i. that they occur at x = — % — 1+v/52.)

UL Symmetry. The points (x,y) and v, — ¥) are sym-
melric with respect fo the x-axis, the one being the “mirror
! image” of the other. Either point is said to he the reflection
CNof t1_1e other about the x-axis. For the purposes of general dis-
cussion it is best to consider the equation of a graph in the form
Flx,y) = 0. It should be evident that the graph will be
symmetric with respect to the x-axis if F(xz,y) = F(x, —%),
since then if (x, y) is a point on the graph [F(x, ¥) = 01, so also
will (x, —y) be a point on the graph [F(x, — ) = 0], Simi-
larly, if F(x, ¥) = F(—z, y), the curve will be symmetric with
Tespect to the y-axis. Further, since a line joining (x, v) and
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(-1, —¥) passes through the origin and the distance from
(,) to the origin is the same as the distance from (—x, —)
to the origin, the graph will be symmetric with respect to ihe
origin if F(x,y) = F{—x, —y). Either point is said to be the
reflection of the other about the origin. If there is symmetry
with respect to both axes there is, necessarily, symmetry with re-
spect to the origin, but not conversely.

These are special cases of symmetry with respect io @ line and
symmetry with respect {o @ poinl. In only a few cases shall we
extend the discussion beyond that for the axes and the origin A\

fllustration 4. Examine F(x, ) =122 —x 4+ 3y —23* -6 = Qfor
symmetry.

Solution. Since v enters with even powers only, it i clear that
changing ¥ into — v will not affect the function F, H&C& there is
symmetry with respect to the x-axis. If, howewér, —x is sub-
stituted for x, F is changed to x2 4 x + y¥=Z 42 — 6. Since
Fix, y) # F(—x, ) there is no symmetry‘\with respect to the
y-axis. There is also no symmetry with\respect to the origin.

Lilustration 5. Examine the following far symmetry.
(@) 3* = x(xr — 1)(x + 3), (Iustrafion 3)

(b) Fix, y) = 22 — 32 — 3 = 0, 3%
©eEN=2y-1=0

&

Solution. xmx\

{a) Symmetric with res}ect to the x-axis since ¥ enters only to an
even power. Thereis no other symmetry.
(b) Here F(x, ypetlf (x, —3), F(x, 5) = F(—1,3), and F(x,y) =
F(~x, —y)./>Hence there is symmeiry with respect to both
axes an@%he origin.
(€} G(x, I G(—=x, —3) and there is symmetry with respect to the
origing

4 .\' 3
.7

N SUMMARY OF TESTS FOR SYMMETRY
The graph of the equation F(x,y) = 0 will be symmetric
¥ith respect to
L The x-axis if F(x, y) = F(x, —y). (Fig. 26)
The y-axis if F(x, y) = F(—x,¥). (Fig. 27)
3. The origin if F(, y) = F(~x, —). (Fig. 28)
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Fic. 26. Symmetry  Fic. 27. Symmetry Fic, 28, Symn:lg\n_ awith
with respeet to X-axis,  with respect to Y-axis. respect to L% origin.

IV. Asymplotes. 1t is of interest to study the~héhavior of |
an unbounded curve in the neighborhood ofihfinity, where .
either x, or ¥, or both become infinite. A cu’i‘?e may recede to
infinity in a certain direction, and if this diréction can be deter-
mined it will be of great aid in plottit;gf?he curve.

Let the curve be given by ¥ = f(a}\and let x = g(») be the
form of the equation when solveg ffor x as a function of ¥

")

Y v{’ 3 .-’La
&N | /
v:; oo .-"'! i
H J,"( |
S S el O .
. \' /
N P(a,d)
PR .
A\X ) z
. :'\.": I *
:"\1. {a,O) .
Nl !
S |
AN :
L, |
FiG. 29 i

{Fig. 29). Since we are essentially interested here in the direc-

tions parallel to the axes, we lay down the following special
definitions:

(1) The line L; through (e, 0) parallel to the y-axis is catled
a vertical asymplote if, as x — g, { | — oo,
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This can be written
(I x* = @ 18 a vertical asymptote if lim f(x) = tco,

(2) The line L. through (C, b) parallél to the x-axis is called a
hovizontal asymplote if, as y — b, | x | — co.

This can be written
(&) ¥ = b1s a horizontal asymptote if lim g(v) = +co0.
Y=— 0

A curve with such asymptotic lines is necessarily discor;t'(ni:?\
ousat x = g and at ¥ = b and the curve is made up of géveéral
separate pieccs. It is important to remark that f(x) €ifght be
multiple-valued and therefore have a finite as well as ah infinite
determination for a given value of x. This is ilifstrated in the
figure by the point P; one determination of y is given by f(a) =
d—the point P —and another is f(a) =§_co A similar
remark applies to g(y). Also a curve"}xight have several
asymptotes of either variety and othersdswell in directions not
parallel to an axis. With- N ¥y
out going into detail we say N
simply that if a curve ap- 4%
proaches indefinitely near.s :
any straight line in the\ |
neighborhood  of  infidity, !

|
1
T

then that straight lime.is an 2 -

- e N - 1 //
asymptote. This (s illus- o
trated by the line)L; in the =2 =11 27 X
figure, N\ b

We nchy%ebmbine these
analysesin’ severa) illustra-

tl0,1“18: N -
N\ s

\ﬂl 4 . . . o
Ustration 6. Find the in- e
fercepts, discuss extent e

and symmetry, find the -
vertical and horizontal -
asymptotes, and sketch
the graph of

y= i -1
x4+2 FiG. 30
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Solution. 1. Intercepts. The numerator of f(x} is zero when x =
0, 1. The x-intercepts are, therefore, (0, 0y and (1, 0}, Since,
when x = 0, y has only the value zero, there is no y-intercept
except (0, 0).

1. Extent. The graph is not confined to a finite portion of the
plane since both x and ¥ can range from —oo to +co.

II1. Symmeiry. The tests of symmetry indicate there is no sy
metry with respect to either the axes or the origin. '\

IV. Asymptotes. From the denominator of f(x) we note rhat,
as ¥ »—2, ¥ —+oo, Therefore the line parallel to ghe/y-axis
passing through {—2, 0), ¥ = —2, is a vertical asymptotﬁ There
is no finite value of ¥ for which x is infinite; therefare there is no
horizental asymptote. But we note that {he ratio rx - ;;

-1
7 +2
approaches unity., Therefore there'\ an asymptotic line with
inclination 45° but we are unable(dt this time to determine the
exact position of this line.

Looking at the function we. 8 ‘that it is negative for x < -2
and for ¢ < x < 1; 1t13p'031t1vefor —2«<x<Qandforx > 1
The essential shape of the curve is consequently determined with-
out plotting any spgcxﬁc points other than (0, 0} and (1, 0). We
compute the coordinates of a few points such as (2, §), (3, —7oh
(—=1,2), (- ,’\412), {~4, —10) and proceed to sketch the graph.

Hlustration Ju, Analyze and sketch the graph of
O\ JE = i) = &+ D& =3)

" approaches the value x as x gets blgge{ and bigger since 2=

o R ¥ —4
lition. In the process of solving this relation for x as a function
¥y we get
) My~ +22+ 3 —495) =0,
from which it follows that

1 VI TR
y—1 ‘

1. Intercepis. The x-intercepts are computed to be (—1,0) and
(3,0). Whenx =0,y = % Therefore the y-intercept is (0, -

II. Extent. Since both x and y can range freely from —oo to +%
the graph is not bounded by anv finite portion of the plane.

IIL. Symmetry. The curve is symmetric with respect neither t0
the axes not to the origin since the tests for such symmetry fail

@ x = g(y) =
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e —
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&
FiG. 31 o)

IV. Asympiotes. The denominator of f(x)‘:i’{s\\:c‘2 —4; sctting

this equal to zero yiclds vertical asymptqte} through (2, 0} and
{—2,0). The denominator of g(s) ig"yv= 1. For y =1, z,

— loi 1 Using the}gﬂué sign, x takes the form

from (2), isx =

" %= 9§, which is indeterminate. But from (1) we see that when

W

¥ = 1 there is a finite value of 3% = 4. [Equation (1), normally
4 quadratic in x, reduces {62 linear equation when vy = 1 since
the coefficient of x? is thent zero. A quadratic equation ax® 4
b 4 ¢ = 0 may be thought of as having one infinite root and
one finite root, namiely x = —¢/b, if @ = 0.] Thus there is one
hO_I‘izontal asymptote passing through (0,1). We have deter-
Mined that nof\ohly is | x | = « when y = 1 but also that x = §
when y = 1. {Thus one branch of the curve crosses an asymptote,
and the.point P(3, 1) corresponds to the poini P as previously
dlscu@d and as indicated in Fig. 29.

€ naws compute the coordinates of a few points: (4, £5), (1, ),

\”16 T9.98), (4, 21). It issimple to sketch the graph as in Fig. 31.

I

r 12,

lustration 8, Analyze and sketch the graph of y*=x(x —1){x-+3)
(IMustration 3). See Fig. 32, p. 38.

Solution, The intercepts are (—3,0), (0,0), and (1,0). The

Curve ig ‘bounded as indicated in I{lustration 3. There is sym-

lfffIEtry with respect to the x-axis. There are no asymptotes. _A

(ZW-E%mtS on the graph are (=2, £V8), (=1, +2), (2 £V10),
L -, )o
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It will be noticed that in the
graphs of these illustrations the
asymptotic lines are dotted in,
Accurate graphs cannot readily
be constructed withoul the pres-
ence of the asymptotes, where
they exist; but it should be clear
that the asymptotes are ot part  ~3} 27!
of the above graphs. Asymptotes
could be part of a graph, how-
ever, as wiil result as a special
case of the following general dis-
cussion of factorable equations.

U Fix, vy is factorable let
Fix, ) = Glx, H(x, ). It is
obvious that any number pair (x, ¥) .whlch makes G = 0 wil
also make F = 0. Therefore G =\O)iS a part of the graph o
F = 0. Likewise any pointon H & 0isalsoon F = 0. Henc
F =0 is made up of the sepa.t:%lte graphs of G = 0 and H =!
and the idea is extensible tefahy number of factors. If G = (
is the equation of the asymptotes of H = 0, then F = 0 is
graph containing its agmptotes.

IMustration 9. Sk&tc}l
~11(:?A Dly( —~4) — (x + Dx — 3)] = 0.

Solution. \ThE last factor is the function F{x, ) involved in Illus
tratigd '7.” Its graph is shown in Fig. 31. Since the first tw
fact\0§ vield the asymptotes, the total graph is made up ©
R{Q« 31 plus the asymptotes,

Illustratlon 10. Sketch F(x, 3} = 22 — 3% =

<

‘ Solution. Since F can be factored into Fx, y) = (x - & +)

its graph will be made up of the graphs of x —y=0 and x+» =t
The first of these equations states that x = y; henceitisa str&lgh
line making an angle of 45° with the positive direction of the x-aX]
and obviously passing through the origin. Similarly the secon
equation says that ¥ = —y, which is a straight line of inclinatio
135° and also passing through the origin. These two lines COf
stitute the graph.

‘There are other fundamental questions that arise in conné!
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tion with plotting or curve {racing as it is olten called, but most
of them involve at least a knowledge of the calculus.

90, Intersection of Curves. The rectangular coordinatesof a
point common to the graphs of two equations will satis{ly simul-
taneously both equations, and the coordinates of no other point
willdo so. Such a point is called a point of intersection of the
airves.  Hence (o find the points of intersection of two curves

we solve simultaneously the equations of the curves and pair
properly the resulting values of x and y. O\
lllustration 1. Find the points of intersection of the curves (a) y=\ x®
and (b)x —y +2 = 0. N
Solution. In solving (a) and (b) R R4
simultanecusly we simply sub- \
stitute the value of v from \’ﬂ(b) (2,4)
either eguation into the other AN
and then proceed to solve the W A2 (@)
resultant quadratic equation (PN 11
mx Thus RV X
r—x42 =0, N
whence N
1 r=-1,2 . "
an & Fic. 33
y =1 %i...>

These must he pair&\ ISI'ODBI'IY to give the coordinates of the
points of intersecfion (—1, 1) and (2, 4). [Equation (a) plots a
parabola, (b) a. Straight line.]

Iustration ’Q.Z.\éketch and find the points of intersection of
{a} x -J&yi’ =4and (byx* — 3 = L.

Solutimi;: (a) Intercepts are (+2,0), (0, £1). The curve is
boutided by —2 < x <2, —1 =y = 1. There is symmetry

_With Tespect to both axes and to the origin. The curve is closed
4nd therc arc no asymptotes. A few points are plotted showing
an oval-shaped graph. (It is an ellipse.)

() Intercepts are (+1,0). For —1 <z < 1, y is complex so
there is no part of the graph in this region. Otherwise x can
Tange to +oo and the graph has two branches. There is sym-
metry with respect to both axes and to the origin. There are
two asymptotes, as indicated in Fig. 34, but we cannot at this
time show this analytically. (The curve is a hyperbola.)

Q"
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FiG. 34 '\“3

From (b} 22 = 1 4 »2 Substituting this in‘(é};. ields

T4y +dp=4 N
a},'z:g,x
y-«‘i\‘/’?‘

AN

The corresponding values of % ‘are given by substituting these

values of ¥ back into elther‘ﬁqﬁatlon From {b)
l S,

’_g

/N 5,

A= + '\/% = —_t2\/%_

Hence the poiQYs} of interseclion are four in number, namely

CVEVENEVE - VD), (-2vH VD), (-2vE -V,
"\
»
) ’\'“’ EXERCISES
T c’e,éhe following curves,
& +» =1
Z2x=3y4+1=0

2
/*\:‘ 3. 4xg—j}3=l.
N ¥ =
b
6.

‘\,),

y=10—-1Dkx+2)x+3).

x(x —2)
yz_j:"—i-B .
T2 = z(xt — 4),
8. xt oyt =
9. 3% =28,

10. 3y = x
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Find the points of intersection of the following curves and sketch.
i@zt =1Lb2x-2y=1,

12 () y=2,(0) 2x —y—1=0,

18. (@) »* ==z, (b) x = 2.

@y =x, 0 y=1-x

16 {a} ¥* = x, (b) x* = y.

21. Loci. We have already stated {p. 30) that one of the
central problems in plane analytic geometry is to discuss ands N\
plot a given function y = f(x). This implies an algebrais\
study of the given function (or equation), Such studies have
been made in a number of illustrations. L >

We now come to the second central problem i ‘anglytic
geometry: giver a curve, defined by certain gemem'c'gqnde'zions, {o
Jind ils equation. This is generally known as a'{bcis problem:
lo find the locus of a poini which moves accoy(z’ng fo some pre-
seribed fow.  To find a locus means to ﬁnd.\th}: equation of the
locus and to analyze, sketch, and identify( 1t if possible.

Until we have made some systerhatic study of certain
standard curves we cannot take uiimany problems on loci.
We give at this time only a few sidfiple illustrations, reserving a
fuller discussion for Chapters X3V, XV, and XVI.

Hustration 1. Find the lggus of a point which moves so that it is
always equidistant f.o@tﬁc two fixed points A(L, 2) and B{—1, Q).

Solution. We pick out, by sight, some point P in the plane which
(approximately yaatisfies the conditions of the problem and give
to P the gegcrhi coordinates (x, ¥). Any true relation that ean
be found 'ch}Ezct’mg the variables x, ¥ will contain the equation
of the Jogus. It will con- y
tain ndthing more provided
1o sextraneous condition is

~~~11{1‘[r0duced.
em the formula for the dis-
tance hetween two points
We may write

TrrorAL2)

@ Vi -1 g g2y
:-.\/(x '-i—_l)Q N J:E Fic. 35

and this is the equation of the locus. It is better, however, to
Tationalize this equation by squaring both sides. Thus
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~U¥From (1) it is evident that the

P —2x+1+~dy+d=x"+2x+1+3,
which reduces to
b} x4y —1=20
We know from plane geometry that the locus is the line perpen- |
dicular to AR and bisecting it.

Ilustration 2. A point moves so
as always to be a constant dis- Pix,y)
tance 7 from the origin. Find
its locus. 2N

Selution. The distance from - > B
Plx, ) to (0,0) s Va4 32
and this must be equal to r. -

- Hence the locus is given by \ r

a4y = g2 .\\’: Fi1c. 36
and is a circle of radius » with cente}hét he origin.

lustration 8. Find the locus of a:péint which moves so that it is
always twice as far from the @<gxis as it is from the y-axis.

Solution. Let a general peint on
the locus be P(x, y). The condi-
tions of the probhlemywhen distance
is interpreted asgjpbs,itive, imply
both » = 2% and y - —2x 5,
Hence the gquation of the locus “\1} o
must canfaifi both of these equa- i
tions adhis N

M~ 200 +23) =0,
,s\w . yg'—‘sz:O.

Y

Pixy)

1
1
|
|
I

v |
1
1
1

—X

locus is two straight lines through Fi. 37
the origj_'n with inclinations 4,
and ¢, given by tan#, = 2 and tan8, = —2.

Hlustration 4. A line segment AB of length L moves so that 4
always lies on the x-axis and B on the y-axis. Find the locus of
the midpoint of AR,

Solution. Call the coordinates of the midpoint P(x, y). Then 4
and B have coordinates A(2 x, 0} and B(0, 2y). Making use of
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the Pythagorean theorem we ¥
have

ex2+ @y2 =L, 50,257
or p(xJY)
# = 5
. A(2%,0)
This shows that the locus is
a circle with center at (0, ®)

and radius L/2. (Compare

with [liustration 2.) O\
Fiz. 38 7\
TMustration 5. A wvariable cir- \

cle passes through A(2, 0) and is always tangent to the '\}ertical
line x = —2. Find the locus of the center of the cncle\.

Solution. Let P(x, y) be the
center and drop the per-
pendicular PB to the line

=-2. Now PA = PB;
hence

Vi -2+ 3t =x 42,
which, upon squaring and
reducing, gives as the de-
sired locus Q

71

¥ o= BN FiG. 39

| The curve passes through (0, 0), lies in the right half plane, i
symtnetric with ¢espect to the x-axis, and has no asymptotes.
‘ (tisa parab({la, as we shall see in Chapter V1.)

i

N\&
\~ EXERCISES
LA pami P moves so that the product of its ordinate and abscissa isa
®nstant. g% Find the locus of P. Ans. xv =k
N\G“m A(0,1) and B(2, 5), two fixed points. Find the locus of P if
obe of AB equals that of BP. Ans. 2x—y+1=0.

lney ~ 335 always 2 units, Find thelocusof P, Auns. (v — 50 — ) =0

4 The hypotenuse of a right triangle is the segment joining (0, 0) and

#.0), Pind the locus of the third vertex. Ans. (x — 2+ =4

b c:n timd the locus of a point which moves so that the sum of its distances
e two fixed points F(4, 0), F'(— 4, 0) is 10 units.

‘ % P moves so that the absolute value of its distance from the horizontal

Ay
Ans. 5+9 1.



CHAPTER IV
THE STRAIGHT LINE O

22. Polynomials. Giving a few preliminary deﬁgi‘tiéns W
begin, with the straight line, a systematic study.bf certan
standard curves. The simplest of these hax’fé. polynomi
equations. 0

A polynomial in one variable x is a functidh:\made up of a sur
of terms each of the form Ax” where A4 _ig\d constant and N is:
positive integer or zero. Thus 323455, 2 ¢ + 617 — 1, and
7x7 + V2 x5 | & are polynomialgs\\The general polynomia
13 written OOV

(1) Jix) = awr + a;s;»’f’”;i' —|— v b @, x4 oa.

The &’s {coefficients) are ¢onstants. The polynomial is of th
nth degree if ay = 0. _Iivalgebra it is proved that a polynomiz
of the nth degree haS\exactly » zeros. This amounts to sayin
that the equatior f(x) = 0 has » roots. We have seen tha
fx)y =0 plots~ n\ﬁ)ints in one dimension and # lines perpendict
lar to the x:@xis in two dimensions if the # roots are real an
distinct. XA multiple root yields only one point (line), ar
compleproots do not plot.

&;ﬁ?@nmwl in lwo variables x and y is a function of the forn

‘(;2)\ F(z,3) = &0 4 a,()ant £ oo + Gur(¥)x + @a(¥)
~Where now the coefficients are themselves polynomials in }
\J Itis of degree in x if ao(y) = 0 and it is of degree m in v if som
coefficient a,() is of degree m in ¥ and no other coefficient is 0
greatgr degree. The degree of a term of F is the sum of the de
grees n x and y, and the degree of the polynomial is the degre
of the term of greatest degree. Thus (37 — y)a3 + o2 — 7 1
¥ + 7is a polynomial of degree 3 in %, 6 in y; the degree of th

polynomial is 8. The polynomial (x, ¥) is called an algebrd
Junetion of the two variables x and .

44
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93. The Linear Equation. The simplest polynomial in two
variables (other than a constant, which we do not consider
here) is one of the first degree. Such a polynomial is called a
linear function and produces a linear equalion when equated to
Z610:

1) Ax + By + C = 0.
We now prove

Theorem 1. The graph of a linear equation is a straight
fine. ¢\
Proof. Firsi. We have already seen that x = &, y k
represent straight lines parallel to the y-axis and x—axls
respectively. Y AN
Second. The graph of N

: > . %)
y=mx is a stm_‘alght line (O,b) M

through (0, 0) withslopem T/ é
i

since the ordinate of any \ N
point on this line is » times Nl y=ot
the ahscissa and this is true re— X

for no point not on the line. &>
Third. Thegraphofy = <\
mx -+ b contains the poinf ™
(0, by and each ordmateiexceeds the corresponding ordinate
of ¥ = mx by theqeonstant amount 5. The graph there-
fore represents a 11} paralle] to ¥ = mx.
Fourth, Mu}ttplymg or dividing the equation y = mx +
b by a const\nt (not zero) will not affect the Jocus. Hence
= Bwmx/+ B plots
the sameMocus and is of

the form (1) where A = Pix.y)
7Bmand C = — Bb. (Ob}AY{
\ y This completes the ’ "
proof of the theorem. ~

kaaorem 2. A straight line %
85 vepresented by a linear
equalion,

Proof. First. Aline paral- FiG. 41
lel to the y-axis (infinite
slope) has a linear equation, namely ¥ = .

FiG. 40

¥
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Second. Any other line will be determined by its slope
and one point on it, say the y-intercept (0, b).

If P(x, ¥) is any other point on the line, then (y — ) /x=m -
and this relation holds for no point off the line, This rela-
tion reduces to y = mx + b, which is linear, and the proof
is complete.

Nole. Even though there is always a linear equation.that
represents a given line, equations of higher degree may 2l
represent a straight line. For example (Ax + By +€)?=10
represents a straight line since each factor of the lefthand side
plots the same straight line. (There are, howevers rédsons why
we should like to say that this equation represefts Lwo straight
lines and that the lines coincide.)  Or again gty y) (Ax 4+ By-+-C)
= O will represent a straight line if g(x, y) =\ has no real point
onit. For example («* + 3* + 1)(Az 4By + €) = 0 plots
straight line since 27 + 2 + 1 = 0 forno real values of x and y
simultaneously. Similar remarksedGld be made about the
equation of any graph. N

24. Special Forms of the Equation of a Straight Line. Every
(linear) equation of a straight line is of the form Ax-+ By+C=0;
this is therefore called the genera! equation of a straight line.
Certain special, o&gtandard, forms of this equation are of both
Interest and use,

_I. Two-Pojit Form. A line is determined by two distinct
points on ith#(x,, y,) and P,(x,, ¥:). Let P(x, y) be any other
point on\the line. Then (and only then) by similar triangles |

N y

2 8

pz(xz: 3"'2)

¥2 ¥
P‘l(xu)‘:)

- |"‘_‘——-x2 —x——— ]

Frg. 42
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524 SPECIAL FORMS OF STRAIGHT LINE EQUATION
Y=Y _ Y2 — M
M X — ¥ X2 —~ Xy
which is the desired equation.
IL. Poini-Slope Form. Since m = 22 21,
X — X1
(1) reduces immediately to H = m or
- 1
2) Yy — 5 =mx — %) \“
Y O
O3
- .\;“\\.\\o
N4
1 \’\
I P (xy,¥,} ‘:\:\ v
~ = — X
FIQ.}}&?;“

UL Slope-Intercept Forggq{( Specializing the point (x1, ¥1) in

{2) to (0, &) ¢i ke

(0, & gives \\&
3) N y=mx+b

ry
:'{\“’
\O° :

SO 1

O
X
FiG, 44

Or again not all three of the coefficients 4, B, C in the general
ﬁquatlf)n are independent: some one of them is not zero and
ehce the equation could be divided by that one, leaving two
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effective paramelers as they are sometimes called. F(n;él example
C
B F
Comparing this with (3) we note that in the general equation
the slope of the line represented is given by m = —A/B, and
the y-intercept by —C/B.
IV. Infercept Form. Specialization of the two points in (Q
to the intercepts (0, b) and (a, 0) gives (y,— b)/x = —b/g of

if B0, the equation can be written]y = —

O\
S ats= b O
Y 7\
N
¢

e A X
Fic. 45

Or again, diVi&L’Hg" Ax + By + C = 0 by C gives, after some
rearrangement,’,
&~ x y
O —w+ = =1,
N _¢ ¢
,“\ W A B

whénte, in the general equation, the intercepts are given by

»2C/A and —C/B.

™ V. Normal Form. Consider a directed line segment 0A of

length p issuing from the origin O and making an angle ¢ with
the positive direction of the x-axis. The line L which is per-
pendicular to 0A and which passes through A is completely
determined by the parameters p and 9. We wish to determing
the equation of this (general) line L.

_ The coordinates of A are A(p cos 8, p sin ) and the slope of L
is —cot 9 since L is perpendicular to OA which has slope tan ¢
Hence, using the point-slope form (2) we obtain, as the normal
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Y

N

FiG. 46 ¢ »f;.

form of the equation of L,y — psind =—cot B(x J—\p cos 6)
which reduces to )
(5) zcos8+ysing —p =0 D

This form of the equation of a straight line- méalled the normal
form {sometimes perpendicular form) since t&coefficients involve
the parameters p and ¢ associated with the “hormal or perpendicu-
lr 0A to the line. And it is important to note that

L. The coefficients of x and ¥ ar& the direction cosines X, u of
anormal to L, Equation (5) ean be written

) Ax *J—’;uj’ —p =0
Il The distance fmm\the origin e the line is p.
Now comparing the two equations
:o\:...‘ Mty - p =0,
Y Ax+By+C =0

we see that(% coefficients A and B in the general equation of a
hﬂe are d’ Tection numbers of any perpendicular line. A = kX

Skf)C = —kp. To compute the proportionality factor %
We\WiIare and add, thus

A+ B = B 4 u?)

Since A2 - ! =cos?g  sintg = 1.
Hence
(6) E=+ !

SR o
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We are now in a position to reduce the general eguation t
normal form by multiplying through by (one of the vajues of),
A B c '

O VaiE T ivarr T ivaiw

Comparing (7) and (5) we see that the sign of VA* + B mu
be opprosile {o that of C so as to make the constant term,@

=9

- (iTzTEW) where the parenthesis is p and' \Et&erefore
positive.  If C = 0 we use for the radical the sam¢ sign as i
of B. \

Tliustration 1. W ite the equation of the'\li}ié through @21
(—6, 8).. Reduce this to the general fofi.}
Solution. Using the two-point form W$get
y-1_ 5£4
-2 g~z
which reduces to x + 2y —v = 0.

77%G
< 3

Iilustration 2. Find thes édilation of the line passing throu
{3, —4) making an angle of 60° with the x-axis.
Solution. Point-gldpe form is called for and the equation is
‘ o\*.m.’ y+4=v3x - 3).
Hiustratio\3. " Given the triangle A4, 5), B(—2,0), C@, ¥
Find t\he equation of the median through C.

Solytion’ The midpoint of AB is D(1, §) and the equation of tit
(desired median is
N s=§_-3-%
x-1 2-1
orilx+2y —16 =0,

S

lusiration 4. Find the intercepts of the line perpendicular t
2%+ 3y — 7 = 0 passing through (1, 8).

Solution. The slopeof2 +33 — 7 = 0is —} and the slope of t
desired line is 2. Hence the equation is
y—6=5x— 1.

Wheny = 0, % = —3 and when x = 0, y = 4. The intercepts at
therefore (—3, 0) and (G, 2).
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R

Ilustration 5. What are the direction cosines of a line perpendicu-
lartox — 8y -+ 3 =07

Solution. The normal form of this equation is
x by 3

Vo6 | V26 V26
The direction cosines of a normal line are given by the coefficients

1 5
of x and y and are thercfore A = —~ ——and u = —=-
: N T AT 1
. . . .. 5
[The direction cosines of the line itselfareh = —— and u = =&,
see (2), p. 18] V26 .,\\/'26.

95. Distance from a Line to a Point. Asa special agpﬁg:étion
of the normal form of a line we show how very readi{y it ‘yields
the distance from a line to ¢ poini. Let Ax + ;u?} p=0he
the normal form of some line L and let d be il}e distance from
A
. SV

\

Yo
N

\ §
/>.\P (x.]‘fy‘;.:)

W
~’\ -

\ ¥ Fic. 47

this line to thepoint P(x,, y1). Now (Fig. 47) p + d could be
considered @ niew “p,” with the same 6, for the parallel line M
ﬂerugh}P. The normal form of M is

el M Ay — 0+ &) =0
Asd by-product this tells us that any line parallel to L will have
an equation of the form A\x + gy — p’ = 0 where p’ is a con-
stant. Further, since (¥4, y:) lies on (1), its coordinates satisfy
() and this yields Az + pn — (p + d) = 0, or, finally
@ d = Nx s — -

This is the important formula for distance from a line to a
Point. It says that the function x + py — p (the left-hand
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Solution. The normal form of

Illustration 2. Find the locus of @ point whick moves so that it is

Solution. We interpret this"tf}“imply either of two lines paraliel to

Iltustration 3. Find the equations of the hisectors of the angles

member of the normal equation of a line) yields the distance
from that line to the point P when the coordinates of P are
substituted into it. This distance will be positive if the line
separates the point P and the origin; it will be negative if P
and the origin lie on the same side of the line.

Mustration 1. Find the dis-

tance from theline y—y—5=0 Y 2N
to the point (3, 4).
4

V2 V2 V2 X
and the distance is d =
3 4 5 ]

VZ V2 A3 V2
The distance is negative and
the point lies on the same side
of the line as the origin.

always two units from the inge"Sx —4dy4+1=0.

the given line and two units {(in abgolute value) from it. The

Fic. 49

normal form is —2x 4 ¢y — L = 0: and the equation of the
d‘csired locus s —$x 4 £y — + + 2 =0, These two equa-
tions, ane for either straight line, can be combined into the one
equation (3x — 4 y —9B8x -4y +11) = 0.

formedbyx+y+2=0and2x—3y~—l =0
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oA\

F1c. 50 7\

Solytion. A bisector is the locus of points equidistant fro.ri{fhe two
lines. The normal forms of the given lines are respe@;i\?ely

2ty +2 o ang 22=3¥ -1 35V

-2 VI3 N
and if P(X, ) is (in absolute value) eqpi&iétant from the given
lines, then AV

— \/é ..:'.. '\/ﬁ
These are the equations of the angle bisectors. The capital letters
X and ¥ are used to stress the fact that they are the coordinates
of points on the desiredNocus whereas the smalt letters x and y
refer to the coordinates of points on the given lines. We can of
course shift now toNower-case letters, It is left as an exercise for
the student tq ghoWw that the two lines in (1) are perpendicular.

%. System§bf Lines. An important idea in mathematics is
that of a fagmly of lines or of curves. Since x = k represents
any ling Parallel to the y-axis, we say that x = k is the family
of lipgsseach parallel to the y-axis. It is a single-parameler
{ﬁz?}?) the parameter being 4. Again y = mx represents the
iamily of lines through the origin with slope m; it also is 2
Single-parameter family. The general equation Ax + By -+

=0, with fwo effective parameters, represents the family of

lines in the plane as does \x + py — p = 0, where the param-
Cers are ¢ and p. The members of a family possess sOme
tmmon geometric property such as being parallel to a given
ling, passing through a given point, etc. Each member of the
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familyx — 2y + 0 = 0 is parallel to the line x — 2y -3=0
the members of the family y — 2 = m(x - 5) pass through the
point {5, 2); the family Mt +py —5 =0 constitutes all lines
tangent to the circle of radius 5 and center at the origin since
each member is at a distance of 5 units from the origin.

97. Line through the Intersection of Two Given Lines. Let
L1Ealx+bzy+(:;=0 and nga:{x+b2y+02 =0 e

N

~N

}?;éﬁ%l
o R
two given lines and P their point of intersection. Consider
the equation \

(1) Lo+ kLy S8k + by + 0) + klawx + by + ) = 0.

This is a ling §ince it is of the first degree inxand y. Butth
cpordinates}of P will reduce each parenthesis in (1) to ze"
mnce,}iir'\hypothesis, P is the point of intersection, i.e., it lies
on edch Tine. Therefore P satisfies (1) and (1) represents I
fam?l‘y of lines through the intersecition of L =0 and L; =
__(AJtss not important which term & multiplies. As (1) stands!
O~ v\_nll not represent L, = 0; to do so &(= 0) would have 10 mul
tiply the first term.

Tiustration 1. Find that member of the family of lines through
intersection of s~y 42 =0 and 2x +3y—5=0 whit
passes through (1, 5).

Solution, The family is given by (x—y-+2)+k@x+3 y—-5)=!
the line in question is a member of this family and passes throut
(1,5). Therefore
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(L —5+2) + k@ +15 ~ 5) =0,
—2+12k =0,

N\
Oy
e\
N/
O
\::‘3\\
FIG. 52 \
N
The equation sought is \\
(x—-y+2)+ (2x+3:v—5) = 0,
or, finally L >

8x—3y‘4-i-7u0

It is, in general, a waste of time tqsblve a problem of this type by
first finding the point of 1nterse(‘:t10n of the given lines.

Nlustration 2. Find the equai\on of the line which passes through
the point of intersectionof2x +y —2 =0andx —y + 7 =0
andwlnchlsperpencll‘{&l rtox+6y —3 =0

Fic, 53

Solation. The desired line is a member of the family

O @x+y—2) +hx—y+7 =0
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Its slope must be 6 since the slopeof x +6y —3 =015 -}
Now the siope of each member of the family is of the form

’r‘l) + & 7 which is gotten by solving (1) for y and then picking out
the coefficient of x. (See the slope-intercept form v = mx + b)

Therefore 6 = — ?—tz ork = % Hence the line sought has the
equation

Cr+y—2+3x—y+7 =0, S
which reduces to ¢ \:\

18x —3y+46 = 0. O
The student should check this, for practice, by SQIV}pg the given

equations for the peint of intersection (—3$» Lf )”and ‘hy applying
the point-slope form of the straight line. m\

INustration 3. What is the slope of the lingy Jommg the origin with
the point of intersection of x — 4 ¥ +,1\\~0 and3x+y+2=0

Solntien. The line is a member of tl’k famﬂy
(x—4y+1)+k(3x+y+2) =0

and passes through (0, 0).< Therefore 1+2k=00r k=-%
and the equation of the hﬂe becomes

(x —4y..+1) —-3Bx+y+2)=0,
\ x4+ 8y =10

The slope of thig line s —1.

In passing we nb(} that if the original lines are parallel, ax -8y +c=0
and ax £by + ¢ = 0, then every member of the family
{ax b5 4 ¢} + klax 4 by + ¢} = 0 will be parallcl to them.
(The\pomt of intersection is at infinity.)

:"\s.
2% ‘Condition That Three Lines Be Concurrent. In algebra

itis'proved that three linear equations in two unknowns (lines),

"\.

R

B
3

@x + by + 6 =0,
Gex + by 4 €3 = 0,
ax + by + ¢, = O,

will have a common solution (be concurrent, meet in a point)
only when the determinant of the coefficients is zero. This i

ey

a b o
a by ¢
a5 by Cs

=0,
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This condition is therefore necessary; it is also sufficient
provided the slopes of the lines are distinct. (The case of
paralle} or coinciding lines is a little more involved.)

Illustration 1. Show that the three lines x —v+6=0,2 x4-y—=5=0,
—x — 2%+ 11 = 0 are concurrent.

Salution. Since the slopes are distinct and since

1 -1 6
2 1 —5|=11-24-546+4+22-10=0
1—~1 =2 11 A

oA\
the lines meet in a common point. !

The student may show that the point of intersection of the ﬁrst two
inesis (—3> %) and that this point lies on the third 11ne~ N

Illystration 2. Find % so that x + v 4+ 1 =0, kxAy + 3=0,
and4x — 5y + &£ = 0 will be concurrent.

Bolution, We must have ) ro
1 11 O
k-1 03 —31-6r % =
4 -3 &k _
Since this is a quadratic equationthere will be two values of % that
will make the lines concurrentyqtamely £ = —3 + 2v10, because

in either case the slopes w{ll’ be distinct.
?9. Condition That\’ﬁirée Points Be Collinear. The two-
point form of the eqUiation of a line is
\ ¥y —-—»n_J 2—3’1
X — i X: — xl
which redw{z"\to
xy1+x1y XY — XY — XY — Xy =0
upory S\Inphﬁcahon And this can be written as a determi-
fenfal equation

x y 1 5
(1) X1 M 1 | 0
Xz Ya 1 ]

to give another two-point form of the equation of a straight line.
We can readily check that (1) is the equation of the Line
ough (x,, v,), (xs, yo) because when either set is substituted
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into (1) for x, ¥ the determinant obviously vanishes since then
two rows are alike. o . _

Now consider a third point (xs, ;). It will lie on line (1) it
and only if

2)

0w o1
X2 ¥ 1
Xz Mz 1

(We may interchange the Ist and 3rd rows without changiqg
anything in this equation.) This is the necessary and sufﬁqent
condition that three points be collinear (lie on a line). , )

Y ’\
Tllustration 1. Show that the three points (1, 2, (’?,363;'(4, 4} are

=0

collinear., A0
Solution. Now K& 4
1 21 v/
17 6 1|=6+28+8-24 - 4 =0
4 4 1 O

) '\ &
Therefore the points lie on 2 lin:e.t v/
Ilustration 2. Find the valug\of & so that (1, —3), (-2 5)

{4, k) lie on a line. N

LR Y
e

Solution. We must have +

1 43
~-2-\"5
@;,:’ k
Therefore 2 — 11.

1
1|=—3%—-33 =0
1

30. Ré\s@;ﬁé of Straight Line Formulae.

O Equarion Form
NS Y= P m e
() T—mm o m Two-pomt
:"1;3) Y=Y =mx—x) Point-slope
\m VM 13) Yy=mx +5& Slope-intercept
(4} f—z +% =1 Intercept
%) M+ py—p=0,or Normal
xcosf +vsind —p =0
(6) v =mx Through origin )
% x =k Perpendicular to x-axis
(&) y=%k Perpendicular to y-axis
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9 Ax+By+C=20 General
xr v 1
{0 ¥ 3 1[=0 Determinant
Va1
EXERCISES
Find the equation of each of the following Lnes.
1. With intercepts {1, 0} and (¢, — 3). Ans, 3x —y -3 =0.. I\
2. Through the x-intercept of 2x + 33y — 8 =0 and perpendlcular to
the line joining (1, 3), {2, — 1). Ans. x ~ 4y — 4 =00
3. Through the intersection of the diagonals of the trapezmd A(1;0 ,
B(0,2), ¢{— 3, — 1), D(— 1, — 5) and paraliel to the y-axis. ~

Ans, S + 1 =0
4. With slope 2 and tangent to the circle of radius 5 wlth‘geﬁter at the

origin, Ans. 2 g+ 5v5 =0,
5. Through (1, 2) and the median point of the trlangle (2,0}, (—5,1),
{-37. Am‘\zx+9y—20—~0
" 6§ Parallel to and + 3 units from the perpendlc\}ar bisector of the line
segment (1, — 2), (— 3, 8). Ans. 2235y + (17 + 3V29) = 0.
Find the equation of each of the following-famnilies of lines.
7. Perpendicular to x — 3y + 6 = Qa0 Ans. 3x+yte=0.

8. Through the intersection of ¥ 4%~ 5 =Oand4x +y+ 1 = 0.
Ans. (x -y —5) +kdxt+y+1) =0
#. Through the center of the"%ctangle formed by the lines x = @, x = b,

Y=ty =d AN Ans. v — +d m(x a-l-b)

10. Through the ()I'lgll} and intersecting the ﬁm’te ling segment joining
29 and (6, 1). ;‘, Ans. y =mx, t Em £ 2,
I
Solve the lollgwirlg problems,
1. Show tha 8x ~5y+8=0,x+2y-4=0,and 4z —3y+4
=0 are coucurrcﬂt

e P so that kx +y +1 = 0,2+ kv +1 =0, and 5+ + & =0

cﬁhcun’ent Ans. =11, —2.
Show that the three points (1, 9), (— 2,3), (— 5, — 3) are collinear.



CHAPTER ¥V

THE CIRCLE
N
31. Introduction. In the previous chapter we examined th
linear equation S N\
O Ax + By 4+ C = 0. (Straight hne)
In this and the next few chapters we study the ‘Second- degre
equation m\

2) Ax*+Bxy + Cy*+Dx + Ey + F‘=’0. (Conic sectior
We shall take up special forms of Kis\équation, discussing i

detail the locus in each
case,

32. Standard Form of OV
the Equation of a Circle, ™
Let P(x, ¥) be a point m*
the plane which mmges 80
that it is alwaysa’ con-
stant distance 7 ffom the
fixed point. (4 £). The
locus of PN’ obviously a
circle of Zvadius 7 and cen-
ter S\ﬂg &); to find it we
neeﬁ‘ only apply the distance formula. Thus

~O’ Vie— kP + 0 — kP =,

@ x—hP+ -k =2
is the equation in standard form. In this form the equatio
clearly exhibits the center and radius. We may reduce (1)1
the form
(2) ¥y —2h —2ky+ B2+ -1 =0,

In this form the equation appears as a special case of the ge{le“
second-degree equation (2) of §31 above: the coefficien
&0

:’Y

FiG. b4
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of #* and »* are the same (4 = C) and there is no ay-term
B=10).

( Conversely any equation of the form »+3*+ax+dy+e=0
can be reduced to form (1) and hence represents a circle.
Therefore @ necessary and sujficient condition that Ax® + Bxy +
Cr+Dx + Ey + F = 0 represent a cirele is that A = C and

B =0. Itisnot necessary that A = € = 1 asin (2) since the
coefficient of x* and 3* is not zero (for in that case the equation &\
would be linear and represent a line) and hence could be
divided out, reducing it to umty D

If the center is at the origin (1) reduces to . O

@) a4yt =1 RS

33. Reduction of the General Equation to Stanhard Form.
The equation Y

{1 'c+y?+ax—1—by—{—c=\0

isoften called the general equation of the ircle although it is no
more general than (1) §32. It is readlly reduced to standard
form. Complete the square first'on the x> and x-terms, then
on the - and y-terms. (To.complete the square on 2 4- Az
add, and subtract, the squargof half the coefficient of 2.) We get
\ .

2 +gx+? —j—b +b+c—a—2—E=0

1 *\?‘ Y+ 3 R M

or

@ (Hz)'*_(”_)z:bfz—_z@.

This is theﬁequatlon of a circle with center at (—a/2, —5b/2)
and radiys r = 4 1va* + B — 4¢. Note that whereas Ax +
By €= 0, w1th real coefficients, always plots a (real) line,
% gircle (2) will be a real circle only if @ + # —4¢> 0.
Y& 43 —4c=0 equation (2) represents one point only
(circle of zero radius).

llustration 1. Find the equation of the circle with center at (=2, 3)
and radios 6,

Solution, Directly from (1) § 32 we have as the equation
(x + 202 + (v — 3 = 36.
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Ilfustration 2. Find the center and radius of the circle
2424+ 2y —-58x 4+ 4y —-T7=0,
Solution. The given circle has the equation
Ly -Fx+2y =4
Completing the square we get
#ogx+ By +H2y+1=F+ 341,

N\
or
=9+ +1p =41 O\
The center is at ($» —1); the radius is 1407, O *

34, Circle Determined by Three Conditions,. ‘Since the
equation of a circle has three effective parameters (i, k, 7 or
a, b, ¢), in general some three conditions canbe imposed upon
them which will determine z circle, uniquelor otherwise.

L Circles through Points. We candinl the equation of the
circle through three points P(x,, P} Pa(%s, 32), Pilxs, y5) a8
follows. Take the equation in gehetal form

24 5 4 agh by 4+ ¢ = 0,

Substituting the coordinateé'(;f the three points in this equation

we get the three linear equations in the three unknowns
a, 5, ¢, o\

(1) aﬂ?}‘i‘ W +e= —x? — ¥,
0% + by o =—x2 — 32

AN s + by ¢ = — g2 — 57,

Thg sin}qli,}ﬁeous solution of these three equations for g, b, and
¢ will ,z(eld the coefficients in the equation of the circle.

) \lfllﬁstration 1. Find the equation of the circle passing through
"‘\\: w4 (1! 2)! (_2: 0)! ('_'1: _'5}-

) 2

Solution, The simultaneousg equations are

a+2b+¢ = —b,
-2a +e=—4,
—a3—5d+¢=-26
1
The determinant of the coefficients is D = | —»
-1 =

[l
b
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-5 21 i -5 1
Y. 01 -2 =4 1
—-26 -5 1 =_é_9, b= —1 —26 1|_6865
17 17 17 17’
1 2 =5
-2 0 -4
c = -1 -5 -26|__ 166
17 17
The equation of the circle is therefore .
17 x2 - 1732 — 49x + 65y — 166 = 0. ,'\".\

'\
Note that if D were zero it would be impossible to solve for avh, c.
But D =0 is the condition that the three points be ‘Gollinear
fsee (2) §29] in which case no circle would exist. /)

II. Circles Tangent to Lines. Instead of specifying that the
circle pass through certain points we may reguire that it be
fangent to certain lines or that its cente{l% on a given line.
Combinations of point and
line conditions may be used to
determine a circle (or circles).

Dlystration 2. The three lines |
=0, y=0, 3x4+4 y—1=0"
form a triangle. Find the

equation of the 1nscr1bed
circle. LA

Bolution, Let the equatxon of
the circle be |

(x — By Lb — k=
Thti cent\nxis equ1dlstant from
; e:.{ e:ldes ol the triangle; FIG. 55
1y k=k=r
\The normal form of 3x+4y—1=10is %+—§J}_—l=o'

Since the left-hand member of this equation gives the distance
Jrom the line fo a point and since the point in question — the
center of the circle — and the origin are on the same side of the
line, this particular distance is negative and we must equate
@) ., _3k+4k—1
o
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Sblving (1) and (2) simultaneously we get b = k2 =7 = 4. The

inscribed circle has the equation
-2+ - %P =10

In a similar manner we may determine the circles externally tangent
to this triangie. For the one in the I, 11, and IV quadrants re-
spectively we solve simultaneously k=k=rand 5v=3 h+4 k-1,
—hkh=k=7r and —-5r=3k+4k—-1 h=—-k=7% a.Qd
—br=3h+4Fk — 1. \

Hiustration 3. Find the equation of the circle tangent .to\tlj'é two

axes and passing through the point (1, —7). O
Solution, The conditions of the problem lead to the }gimultaneous
equations .\'.\:.
0y (A — B + (=7 — B2 =750
2 h=—k=r,

which yield 2 = 8 + V14, & = -8 VA4, y = 8 + V14, From
thege the equations can be Writtqn':down. There are two circles
satisfying the conditions, W

Iustration 4. Find the equatioh of the circle which is tangent to
the y-axis, which passessfiitough the point (—1, —1), and the
center of which is on th&fine 2x + y + 4 = 0.

o
)Y X
o 2
QO
AN N
4.\ Y4
\ 3
FiG. 56
Solution. The simultaneous equations are
(1) —h =17,
2) (l~hp (-1~ ke =p,

3 2h+ k44 =0
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These ha\»e the two sets of solutions £ = —1, & = —2, r = 1 and
k=—4, k=1, r =% Again there are two circles and their
equatlons can now be written down.

EXERCISES

1. Write the equation of the circle with center at {1, — 3) and radius 4.
Ans, (x —~ 1)2 4 (v + 32 =16.

2. Find the center and radius of the circle 22 + 2 —dx 4+ 3y — 1 = 0.
Ans. 2, — 3, r = 3V32L

3, Show that the equation »* 4 3+ 2x — 4y + 8 = 0 plots no reak:\

point. '\
4. Prove that the locus of a point, the sum of whose squares of ds.stances
from two fixed points (x1, 31) and {xs, 32) is a constant, is a circle real br lmag1
. R
Find the equations of the following circles. \%
6. Through (1,2), (0, — 13, (—~ 1,1). Ans. xﬁ-!-y?\vx- —2=0.
8. Through {— 1, 2) and tangent to the axes. $
Ans. (xF 1P+ (v — 1 = 1and(x+5)2+[y 5y = 25.
T. Through the point of intersection of 2 x—y—!—? 0 and 3 x4y+8=0
with center at the origin. a3 Ans. x2 4 32 = 10,

8. Through (2, — 1) and (— 2, 0) mt@@ﬂter on2x—y—1=0.
8N Ams. G+ DT 048 =3k

35. Equation of a Line Tangent to a Circle.

. At @ Given Point. \lset the circle be (x—hY+(y-k)2=1*
nd Plx,, v,) a pomt on it. Since the slope of the line joining
he center (%, k) an@P is (¥.— k)/(%; — k), the slope of the
angent will be 'Y{xl — h)/(y», — k) and the equation of the
ine tangent to t\ﬁle circle at point P becomes (point-siope form)

Xy —
T
Mak mg use of the relation (x. — &) + (¥, — k)? = 1% the
“Quation of the tangent reduces to

D (X — W) (1 ~ ) + (v — BY(31 — k) = 7.

Because of its symmetry this is easily remembered.
fthe circle is centered at the origin, 4° + 9 = 1", the equa-
fon of the tangent at P is

&) X1+ yn =1

h
.j;’a y—n-= 7 (x — %)

Q!
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The tangent to x2 + 3 +ax + by + ¢ =0at Pis
@) st atm AL ) to=0

11. From a Point outside the Circle. 1f the point P'(x', "
is outside the circle there will be two tangents from it to th
circle. For the circle 2 + y* = #2 their equations will be

_xy & :r\/x” + 3y =7

) y—J P (x — x').
II1. With a Given Slope. The parallel tangents, meh\slope
mto(x — k) + (y — k)= +1are O
(5) y—~k—m(x—k)+r\/1—[—m~
which reduce to ..\\ v
{6) y-mx%—r\/l—i—m?
for the circle x2 + 1? = 72, \“\
Ilustration 1. Find the equatlon Of the tangent to each circle a
the point indicated. o\
(a) (ﬂﬂ—l)“-l-(:v—FE)2 =9, (1,1%
(b) By +4x S5y +9=0, (-1,3);
©) Ny =3, (1, ~VI).

Solution. The equa‘!slons of the tangents are, upon direct substits
tion in {1}, ({)\and {2) respectively,

(a) (x~1)(1~1)+(y+2)(1+2)= )
=1;

(b) x(v—l) +3y@) +2x - 1) — (v + 3) +9 =0,
or»\ 2x 4y —-1=10
(%w‘ 2 —v2y =3

) :‘mustration 2. Find the equations of the tangents to the circh
o \ # + ¥ = 16 from the point (<3, 7).

\/  Solution. From (4} we have, as the desired equations,

—21 + 4V —
-7 THEAOEB T g

or
¥ =10 + $V42 (x + 3).

Tllustration 3. Find the equations of the tangents to (x + 277
{y — 1) = 9 with slope -1,
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Solution. Equation (3) yields iy
y-1=—(x+2) +3V3 x
or x4 v+1+3vV2=0
.
38, Length of a Tangent. Pi{x'y')
let P'{x’, ¥') be a point out- Clh,k)
sideof (x — B)*+ (v — k)2 —1r2=0.
Draw P'T, TC, and CP’ (Fig. __ X
57) where T 1s the point of con-
tact of the tangent from P’ and FiG. 57 A
C the center of the circle. O\
Now P = PCt - TT®, AN
But PC = (' — k2 + (v — k2
and CT* = O
Hence PT=(x — B+ (¥ — @o e
gives the square of the length of a tangent.y Lo 2

<
Ilustration. Find the length of a tange.n‘tt t the circle 22 + ¥ -
6x4+2» —6 =0 from P'(-2, Ol +

Solution.  We first must reduce thé ;éqhation of the circle to stand-
ard form. This is (x — 3)? 4§y + 1)* = 16. The length of a
tangent is therefore

P'T N3+ 1 — 16 =VI0.
\

37. Systems of Cirtles. Many of the ideas of systems, or
families, of straighit’ lines (§ 26) carry over to circles. The
tamily of concéhtric circles with center at the otigin has the
®quation xﬁ\%—:\yz = 12; the family of circles tangent to the axes
has  the Jequation (x — kB + (¥ — h)* = &%; the equation
(v H.}Qg + (v — 1)? = 25 represents the family of circles with
@nters'on the line y = 1 and radius 5. All of these are single-

Wameter families. The family of circles passing through the
¥igin has the equation x2 + 3% + ax + by = 0 and is an ex-
Ml of a two-parameter family. The general equation of all
tircles in the plane has three parameters. _
of tht P l(xlg 1) and Ps(x,, ¥,) be the two points of intersection

Xtwocircles S; =2 + 2 + @ux + by + ¢ = 0and S; =
TY¥ 4 4w + by + ¢, = 0. Consider the equation
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(1) Sy +2S:= @+ 4+ ax + by + ¢1)
+ B(x? 4 ¥ + aox 4 by +c3) =0,

This represents a circle since it is of the second degree, the
coefficients of x* and y* are the same, namely (1 + k), and there

AN

P\
FiG. 58 %4
\~

is no xy-term. Moreover P, and P 2 both are points on it since
the coordinates of either reduce ‘each parenthesis of (1), and
hence the whole equation, togero. Therefore (1) represents the
Jamily of circles through the poinis of intersection of the iwo given
circles. A particulap member of this family may be deter:
mined by spet:lfym{g :bhat it satisfy some further condition.

Ilnstration, P‘ﬁi that member of the family of circles throug!
the interdettions of 22 + 3 —5x +y —4 = 0 and »2 + '+
2x = 3\y 1 = 0 which passes through {1, —b).
Sol’m{@nf The family is given by
.\‘%5*'4-}’2—5x+y—4)+k(x2+y9-+2x_3y——1) =6,
'.\3 .* and the particular member passes throngh (1, —5). Therefor
\\," (1+25~5~-5—4)+ k(1 +25+2+15—1) =0,

E=-%
The equation of the desired circle Is

Sxf 451 —39x 3+ 13y —26 =0,
38. Radical Axis. A very special and interesting case aris
when k& = -1, for then the system S, -+ &S, reduces (0
(1) S-Sy = {a, — a:)x + (51 — bz)}' + {e1 — €3) = 0.
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This is not a circle at all. It is instead a straight line and is
alled the radical axis of the two circles S, = 0 and S, =
(R,R; in Fig. 59).

R

—t -~ —

Ry

Re

O
N

Q; ~:
G, 59

™ ' -
The radical axis possgées the following properties:

L.
1L
111,
)
V.
VI

Vi1,

It is the lindof the common chord if the circles intersect
in distinct real points; o ‘

It is\the €ommon tangent line if the circles intersect 1r§
COi:?’b\ident points (are tangent internally or externally);

Atis a real straight line even though the circles do not
Untersect in real points;

It is the locus of points from which tangents of equal
length can be drawn to the two circles;

It is perpendicular to the line of centers of the two
circles; . _

It does not exist (is at infinity) if the defining circles
are concentric; o

The radical axes of three circles, taken in pairs, intersect
in a point called the radical center. (When the centers
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of the circles are collinear, the radical axes will
parallel lines and the radical center will be at infinity)

Iltustration 1, Find the equation of the common chord of the tw
circlesx? + 32+ 3% — 2y -7 =0and 22 + »* — —y+ 2=
Solution. The equation is immediately written down as
4x —y—9 =0, ~
It is left for the student to show that the circles do not intersed
i real points. O\
Ilustration 2. Find the points of intersection pEﬁ:hé circls
Pty -2 =0andx®+ 3+ x4y —20 =0

Solution. Tt is easier to solve the equation of tiie first circle with
that of the radical axis, which is x + y + 5= 0. Weget

. x2+(-x~5)2—25\: 0,
or x + 5= 0.

The points of intersection are (0, 75):\and (—5, 0.

Nlustration 3. Prove propertyz};' 1n the general case.

Solution. The radical ax18~Ls )

(1) (@ — @) ‘F(’bl —b)y 4+ (L —c) =0
-3 _ 31_‘:;03_
with slope by Y,

2§ "
The slope of thQ\lihe of centers will be, since the centers themselves
have coofdinates (_ G, | {’L) and (_ & _ %!),

2K A 2 2 |
O _b b
& 2 +.£ _ b= by
O\ _& 4 -
~N 2 + 2
s " This is the negative reciprocal of the slope of the radical axis and
\ } hence the property is demonstrated.,

39. Orthogonal Circles, Two circles will be orthogonal (i
tersect at right angles) if their tangents at a point of inter
section are at right angles. Hence the tangent to one cir_cle
passes through the center of the other and vice versa, We wish

to determine the condition on the coefficients that two circles
shall be orthogonal.
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Let the equations of the circles be x2+y2+a.x+b,y+¢, =0,
md 2+ 3* + axx + by -+ ¢, = 0. Now (Fig. 60)

7'\
Fic. 60 ™
CC7 = OT + T O
e SR (W
1wy = p) 2 2 2\,’
ad by (2) §33, CT° = 72 = “"—“’j,:—‘-‘al\—@‘ ’
o 24 B
Clt=rp =% —1-’{';1. C2
Hence Ny
i(-}___g;zz !’_} P_22__312+.b;’2:—.—461+G22+b:22—4c2
272) (3 - 2) =T 4 ’
whu:h reduces to the Slmp]ﬁ r\latlon
}') alaz+\b1b2 = 2(01 + 62)!

‘FhICh is the condithr;; (necessary and sufficient) that the two
‘ﬂrcles be orthogon\dl
Usstration. . Show that the two circles2? +5* ~3x+2y-3=0
and g2 * %\4- 2x + ¥ 4+ 1 = 0 are orthogonal.
Sﬂlutmn \'The condition (1) for orthogonality reduces to
(=3)@) + @) = 2(-3+ 1.
S0,

te the circles intersect at right angles.

EXERCISES

;ttl Find the equation of the tangent to the circle (x — 1224 (¥ + )2 =
e point (3, . Ans. 4x+2y—13 =

* Find the equations of the tangents to % 4- 3® = 4 from (1, &).
Ans, 3y+6x—-24=+ 2v33(x — 1.

()
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8. Find the tangents to (x + I)* + (y — 5 = 9 with slope — 2. _
Aps. 22 +3y — 3 +£3v5 =i
4. Find the length of a tangent to the circle {x — 2)* 4+ (y — 4)* =]
from (7, 9). Ans. Vi)
5. Find that member of the family of circles through the intersection d
wty—x—2=0 and 2+ +5y—1 = ( which passes throut

{1 1. Ans. T2+ 7y —6x+5y—13 =1
6. Find the equation of the radical axis of the two circles x? + 3?2 — 16 =I
and (x - 1) 4 — 1 =0. Ans, 5 €8

7. Show that the radical center of the three circles x? 4 32 + x — ¥ *\2 =(
24y —Tx+5y—8=0and s+ 32 = 3 is the point {0, 1). { M)

8. Show ihat the two circles x* + 32 —4x —1 =10 and‘xi ¥t
y — 1 = 0 are orthogonal. z\m‘g'

9. Show how to construct the radical axis of two n —Ei,hteréectmg circle
{(Hint : Draw another circle cutting each of the givenﬁ‘%k and find the radin

center.) \\



CHAPTER VI
THE PARABOLA

4. Definitions. A parabola is the locus of a point whick
maoves so that the ratio of ils distance from a fixed poini and from’
¢ fired line 1s unily. The fixed point, F, is called the fgquq
and the fixed line, D, the directrix. By definition, the distance
from any point P on the parabola to the focus is equal 10 its
distance to the directrix (the sign of the latter being’disre-
garded). The ratio PF/PD is called the eccentfiéety e, and.
¢=1. The line FD through the focus perpéndicular to the
directrix is called the agxis of the parabola, « The midpoint V
of the segment FD, obviously a point on théJocus, is called the
verlex of the parabola. The focal chotd perpendicular to the
axis is called the latus rectum.

a\

41, General Equation of a Pardbola. We choose any point
F(x, y1) as focus and any line¥% + uy — p = 0 as directrix.

BN
,11+ ’: 9,
N
y t\ N/ T
'\ latus rectum
Q %
“:; @c‘%_ X
\ Y X
&
N\ Fic. 61

’I‘E_le homal form of the line is used since distance is invo]vgd.
ith reference to these defining elements (Fig. 61) the equation
of the parahola becomes

. VE P+ @ -y =M +py— P
which simplifies to

73
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(1) 2 — D24 2xuxy + (w2 — 132 4 2(x; — M)z

+20n — D)y + (" — x2 — y)) = 0. .
This is of the form Ax* + Bxy + Cy + Dx + Ey + F =,
an equation of the second degree. Moreover, it ¢an be checked
that B2 — 4 AC = 4332 — 40 — 1){p2 —~ 1) =0,

Therefore & necessary condition thaf Ax® + Bxy 4 Cy? 4
Dx 4+ Ey + F = O represeni a parabola is that B* — 4 AC =0,
{See Chapter X1 for a fuller discussion of this condition.)

Equation (1) reveals that if the directrix line is paralle] ‘to one
of the coordinate axes then B = 0 since either A O will be
zero. In the equation of a parabola so placed there Swill there
fore be no xy-term. This is a noteworthy remar‘k

42, Standard Forms of the Equation ¢f 3 Parabola. The
definition of a parabola makes the ‘‘shape’'of the locus depend
only upon the distance from focus to/@hitectrix and not essen-
tially upon the coordinate system. \guation (1) is complicated
because of the choice of a general(peint and a general line. By
an appropriate choice of axes this equation can be simplified;
but it will then represent only parabolas in special positions.
For example if axes are chosen so that the focus has coordinates
(p,0) and the directrimthe equation x = — p, the locus defini
tion yields x + p, —\v {x — p)® + 3%, which reduces to the
very simple equﬁﬁtwﬂ ¥ = 4 px. This is one of the standar!
Jorms of the gguation of a parabola. For quick reference we
list the four fundamental standard forms, tabulating pertinent
1nf0rmatJ\n and exhibiting the graphs.

&

\O - L Axis Parallel lo the x-Axis
RN NS
N |
S DI
| |
D) |
! vk
| X |
VOO0 F(p.0 !
[
1
]Il ,l o
®=—p x=h—p

F1c, 62 Fic. 63
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Equation: ¥ =dpx (v —kr=4px—kh
Coordinates of vertex: V0,0 Vik, k)

Coordinates of focus: F{p, O Fh4+p k)

Equation of dircctrix: x=—p x=h—p

Length of latus rectum: |4p! |d4p

If p is positive the parabola extends to the right as in the
figures; if p is negative it extends to the feft,

1. Axis Parallel to the v-Axis

Axis 2\

Y Y

V(0,0 D
oI y=—p NS
i )
Fic. 64 & Fe 6
Equation: , = 4 by x—hr=4p(y -k
Coordinates of vertex: V0, 0 Vik, k)
Coordinates of focus: \\ (O, p) Fink+m
Equation of directrix: M y=—p y=k—-p
Length of latus rectur\n‘:"' i4p] E¥

lipis Dositi(&he parabola extends upward as in the figures;
pis negative it extends downward. The vertex is respec-
Uvely theminimum or maximum point on the curve.

A parabola is symmetric with respect to its axis. The
Tamerieal value of p is the distance between the vertex and
f‘hls- It is also the distance from vertex to directrix.

Wastration 1. Write the equation of the parabola for which y = 1

1 the directrix and F(3, —2) is the focus.
Solution, Since [2p| =3, [p] =28 The parabola turns down
and p = —2.  The vertex is at (3, —%) and the equation is

(x — 32 = —6(y + 1)
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Illustration 2. (&) Write the equa- Y
tion of the parabola with vertex
at V{2, 3) and focus at F(0, 3).
(b) Find the latus rectum.

Solution. (2) Since p =-—2 the
equation is

(v — 3 ==8{x — 2).
(b} The latus rectum is {4 p| = 8. 2

o oo o

Li¥]

FO,3)§V(2,3)
.\:\’

43. Reduction to Standard L ¢

Form. The most general equa- T —
tion of a parabola with no xy- y
term present (and hence one K
whose axis is parallel to one of W TG 66
the coordinate axes) is one of the tpr(grms

(1) Av» 4+ Dx + Ey+F =0, Ax‘is parallel to the y-axis;
(2)  C¥* + Dx + Ey + F = O\ Axis parallel to the r-axis.

In either case it is easy to‘«rééuce this general equation to it

corresponding standard fefm by the familiar process of comple

mg the square. N\

Ilustration 1. Rp,qﬁce 222 —3x + 8y + 1 = 0 to standard for
and sketch, ()

\ X\ , .
Solution, Flét we divide the given equation by 2 in order to redu
the cogtficient of 42 to unity.

A\
o\ w-3Z 4y 410
~ 2 2
\ b yo s
e et 2 ~
Y33

/’— 1\ X
-1} FE-8

Fic. 67
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Completing the square we have

3 X O

(x ~ %)2 =—4y+

(x — 3 =—40 — 7o)

To make an accurate sketch we shouid indicate the vertex, focus,
and directrix. From the equation these are V() g'5), F(3 —44),
and 3 =

Mustration 2. Write the equation of the axis of the paraboi@
P =dx+4dy+T7=0 PR

N

Solution. Reduced to standard form the equation is .
(v +20 =4 — D, XD
giving V(% —2), p = 1, F& —2). Since the axi passes through
Vand F ifs equation is y = —2. \
N

44, Equation of a Tangent. A line wl’ﬁéh is parallel to the
axis of a parabola intersects the para,bola in only one (finite)
point; ali other lines will cut the parabola in two points real
and distinct, real and coincident) or complex. A line which
meets a parabola in two comeldent points is calied a {angeni.
{A tangent to any curve at a pomt P is the Imiting position
of a secant line, cuttmgmthe curve in two points P and @, as
d-P)

We summarize the }irmulae for tangents to parabolas.

Z

ParagoLa O\ <& TANGENT
.'\"‘ ' At (o, 1) With Slope m
7=t pg (Y™ vy =2 pla-t) y=mx-+p/m
Bl pyN’ an =2 ply+n) y =mx—pit

D—kr=dpix—k)  (y—R(n—k) =2 platn -2k y—k=mx—h)+b/m
C-BE=dp(y—k) (x—R)@-B=2p+tn—2k y-k=mx—h—pm

\Ihustratlon 1. Write the equation of (a) the tangent and (b) the
normal to the parabola 3 — 12x — 2y — 23 =0at (1, 7).
Solution, (a) Inm standard form the equation of the parabola is
(y — 1)z = 12(x + 2);
the equation of the tangent is

(r— DT ~1) =6 +1+4),
or x—y+6=0
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(b} The equation of the normal will

therefore he

or

x+y—8=0
Hlgstration 2.

Write the equation

of the line of slope 4 which is tan-

gent to 2* = .

Solution.

The tangent is

tion of £ on the axis of the para:bola

This fundamental

y=43— ()4

or

y=4x —4,

45, Properties of a Parabola.
The following properties are listed
without proof. They will serve as
good exercises for the student.

I. All parabolas are essentially
alike in that, by a proper choice of sca‘bes (and axes), any para-
bola can be made to coincide with'any other.
II. Let P be any point ona parabola and let @ be the projec-

5

4

3

2

N\
2,1 1 FLY
vy war BT 2
N\

Ky
’..,.\‘

$

.\\.‘

Then

PGS 4(VFY(VQ).

Fic. 68

” erty can be used to write down the

standard forms of the equation. Indeed it can be used to

define a parabola.

(Fig. 69.)

Fic. 69

Fic, 70

III. A tangent to a parabola makes equal angles with the
axis of the parabola and the focal chord drawn to the point
of tangency. This is the well-known reflective property of
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parabolic searchlights and is the source of the name “focus.”
(Fig. 70.}

IV. A tangent and a line perpendicular to it through the
focus intersect on the tangent at the vertex, (Fig. 71.)

F F
v '\ 2N
"\
D \ N/
o <D
Fic. 71 FIG. 72\

V. The tangents at the ends of the latus rgcfr;um, the direc-
trix, and the axis are concurrent. (Fig. 72;,3\’ &

EXERCISES _ ()

Reduce the following equations to stanti‘a}ii' form; write the coordinates
of vertex and focus; write the equationsef the directrix and axis.
La—-3y+3=0 Ny
Ans. 52 =8y — 1); VO, 1), FO.1); y=4=x= 0.
23 —8x—8y+8 =00\
Ans. (v — 4 QU+ 1; V(- LO, FL 45 x=— 3,y =4
3 4¥+dxt+day +B="0.
Ams. (¢ + 3P @6 25 V(-2 — 2, F(— 3 — 8

. y=—hx=-

l‘:.{»

Find the equatkjiiof the tangent to
L —4p 7S 0at @ 1. Ans. 4x —4y+3 =0
8. (y — 2\ — 3¢x + 1) with slope & Ans. x -2y +2 =0
8. H{l&,‘&e locus of a point which moves so that it is always equidistant
tm3ei-4y +7 = 0 and (1, — 2).
) Ans. 163 + 24y + 95 — R x + 1567 + 76 = 0.
(1'3 A v_ariahle circle S is always tangent to x = — 1 and passes through
'U). Find the locus of the center of S. Ans. =41



CHAPTER VIi
THE ELLIPSE

46. Definitions. An ellipse is the locus of a point which moges,
so that the ratio of ils distance from a fixed point and from a fixel
line is a constant less than unity. The distances mvolxeed\are

numerical. O
Fixed point F Focus A0
Fixed line D Directrix £ ¢
Fixed constant ¢ (<1} Eccenfrieity
PF
PD = ¢ | eﬁﬁtﬂon of ellipse

\\ 7 Fi1G. 73

Consider the line through the focus perpendicular to the
directrix. From the definition PF/PD = ¢/l there are obvi-
ously two points V and V’ which divide the (undirected)
segment FD, internally and externally respectively, in the ratio
of ¢/1. Therefore V and V" are points (on the same side of D)
on the ellipse; they are called the serfices. The segment VV'

80
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s called the major axis. By symmetry there is another point
p and another line DY such that ¥’ and D" would serve in the
definition of this curve. Thus an ellipse has twe foci and iwo
direcirices associated in pairs F, D and F/, 1. ‘The midpoint
of FF', which is also the midpoint of V'V, is called the cenier C
of the ellipse. Tt is evident that the locus is contained between
the vertices, that it is bounded in all directions, and that it is
gymmetric both with respect to the major axis and to a line
perpendicular to it through C. It is therefore a closed curve
(an oval). O\

The length of the focal chord perpendicular to the majer -
axis is called the lafus rectum. The length of the central ,ché‘rd
perpendicular to the major axis is called the minor axiga\

AN

47. General Equation of an Ellipse. Take any point

Fir, y1) and any line D, \x + py — p = O.\By definition

the equation of the ellipse is Qg
Vi = A O - = Q8N wy - 5)
which reduces to R \y

1 (e — D2 4 2 eduxy & fééﬁﬁ — 1) + 2(x: — ep)x
+ 2(}’&.% epp)y + (ep* — 20 — ) = 0.

This is of the form A% Bry + Cy* + Dx + Ev + F =0,
i equation of the sedond degree. Moreover it can be checked
hat B: — 4 AC =4 — 1) < O (when ¢ < 1).

Therefore @ gressary condition that Ax® + Bxy + C¥* +
Dt + By 1\ BE70 represent an ellipse is ihat B> — 4 AC < 0.
(See Chapter X1 on the general equation of second degree for a

ller disditssion of this condition.)

Equation (1y reveals that if the defining directrix kne is
varelke] to one of the coordinate ases then B = 0, since either
dor u will be zero. In the equation of an ellipse so placed
there will therefore be no xy-term. This is noteworthy.

a 4, Sjtandard Forms of the Equation of an Ellipse. By an
PPropriate choice of axes the general equation can be reduced
O one of the following standard forms.
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—

1. Major Axis Parallel to the x-Axis
¢ = semimajor axis

X
D* D
Fi;, 74
Equation: i‘: +£ =
Coordinates of vertices: Vi(g, 0), V'(— a, 0) 2

Coordinates of foci:
Coordinates of center:

Equations of directrices: ¥ =+ S L™

i)
V*Q‘jv

c{0, 0y

Y

V\F’ E/VT
N\
Df

X

v

L
/

R Y
""

Semimajor axis:,
Semiminor a);ls N

Eccenmcu:y
Lenggh\f latus rectum:
N

«
b
e =
2

Flage, 0), F/(— ae,Q

v — B

.’Q\.’D 3
e N
A\ v
Qt&' 75
0@4 k)z - k)z
b.

\«V(zz +a k), Vi —a l

F(h + ae, &), F'(h — ae.]
Clh, k)

x=h+

ooy

<1
a

:.‘II. Major Axis Parallel to the v-Axis

a = semimajor axis

N

Fic. 76

Fic. 77
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. ¥y =R b — &P
Equation: b‘-’-+a¢9_1 R +T=
Coordinates of vertices: (0, a), V'(0, —a) Vit +a), Vi, k— a)
Coordinates of foci: F(O, ae), ({0, — ae) Fh b + ae), F'{h, k — ae)
Coordinates of center:  C(0, 0) Clk, &)

Equations of directrices: ¥ = + g y=%k=+ g
Semimajor axis: a
Semiminor axis: b
Vg —
Eccentricity: ¢ = —-%—be <1

Length of latus rectum:

Nofe:
continue to use @ as the

thought of as a2

(2, —1), with major axis = 10 andiparallel to the x-axis, and
(b) Find.theéeccentricity, the foci, and the

with minor axis = &

There is a minimum

25
a

semimajor axis.

N\
Hustration 1. (a) Write the equation of the ellipse with center at

number of changes\'; in‘: the
formulae, and these are natural and easy to remember, if we
Thus the larger of

fhe two numbers under x? and 3* in a givenyeguation is to be

vertices. (c) Write the equations of the directrices.

* Solution. (a) The equatign'\“i“s

(x e | (r 12 _
I R T

N\ %

Y

3

2
1
1 2 2 4 8 637 8

=X

\\i / _—Ile—5—4—§ —2—1 ¢ 19
v('—s,—n{ et v(7,~1)
iF’(-—l,—l) _2(2,—1) F(5,-1) %
o'l \—4_/ ID
| |
19 x,,i;.

FiG. 78

N

RS
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®) e = “\“/255—_1§ =3 =3,F2+3 -1 F@ -3 -]
or F(5, —1), F'(—1, -1}, V(7, —1), V'(=3, —1).
© x=2ig or x =34 x =— 12
S
THustration 2. Sketch the ellipse v
2xr+ ¥ =
Solution. In standard form the 2 »‘Qﬂ N
equation is FlOv2) A\
1 ¥ Nt
P '
3Tt \
We compute: @ =2, b=v72,
e = \/_ 0,0, V{0,2),
V(0, —2),F(0,v2),F (0,—V2). «/7>
The major axis is parallel te _2)
(coincides with) the y-axis.

49. Reduction to Standard NV
Form. The most general equas)

FiG. 79

tion of an ellipse with no xy-tefin present (and hence one whose
axes are parallel to the coordinate axes) is of the form
1 A 4 Cy +Bx + Ey +F =0, AC > 0.
The condition B .‘4>1€ < 0 reduces to AC > 0 in this case,
since B = 0; it ﬁrﬁahes that A and C are of like sign. This
equation can bé Yeduced to one of the standard forms by com-
pleting the dqtare.

Illust:a\i\n 1, Reduce x* + 44 + 4x = 0 to standard form and

Sk‘extm Y

n
| %
-

FiG, 80
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Solution.
24+dx+4+42 =4,
(x +2)7+4y =4

E_: 2 +.3§ = 1. (Standard form)

=
Further, ¢ =2, b =1, ¢ = "73 C(=2,0), VO, 0, Vi-4,0),

F(-2 ++v3,0), F'(—2 ~Vv3,0). The directrices have the

equations x = —2 + 4v/3 and the latus rectum is 1. The major

axis is parallel to (coincides with) the y-axis. O\
Nustration 2. Reduce 5x2 —10x 49y — 54y +41 = 0(to '

standard form. A\

<

Solution. We reduce the coefficients of x? and »? withlzl enthesis
to unity by factoring out of the x-terms and the p-terms 5 and 9
respectively, obtaining \

AN
5(x* —2x Y4+ 9(v* — 6y ):-NQ,:.
Completing the squares we get ¢ v
5 — 2x + 1) + 93 — 6y +@)= —41 + 5+ 8L

Note that we have actually adda’cf 5 and 81 to each side of the

equation. Finally we obtain.asthe standard form of the equation
¢ 8y
&\.. 5

Further g = 3, b =A5, ¢ — & V(4,3), V(2. 3); with this in-
formation it W;Otﬂd be easy to sketch the graph. This is left as
an exercise forsthe student.

:“\'5;

6o, Efﬂ!&ﬁ of a Tangent. A line which intersects an
tlipse inltwo coincident points is a tangent. As in the case
o ihe(circle, but unlike that of the parabola, there will be two
: ts to an ellipse with a given slope. We summarize the
fmulee for tangents to an ellipse.

x3 W

x—hy Ok _4
+
a b
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TANGENT
At {x1, 3} With Slope m

%-{—%:1 ¥y =mx tVam + B

G—Wm=k) | (y—k)bgyl—@ — 1 y—k=mx—h)+ Vamip
@

Nofe: Remember that the farger of the two numbers wnder
x* and 37 1s to be called ¢*. If @ is under 3 or (y — &), the 4
and the b in the formulae for the tangent will have tQ besmter
changed. O

Ilystration 1.  Write the equation of (a) the tgg@;éfit and (b} th

normal to the ellipse 16 %% + 3 — 16 = 0 e}‘i'\(’,{ —2v3).

Solution. (a) The equation of the tangenius’

3, #(=2VB) N
) | W22V,

or 4x~\/§3{~—{:8=0.
(b) The equation of the normal'is.”
¥+ oA E— ? (x — ).

Dlustration 2. Write the equa-
tions of the liine} of slope 2
which are t ngent to

13 5243 32 226 x+24 y4-22 =0,

Solutign'C/The equation of the
ellipse’in standard form is
2NV .

W1y v 44y
O -
~\ The equations of the tangents

@ are
y+4=2(x-1)%5
which reduce to
2x—y—-1=0 Fic, 81
and 2x —%—11 = 0.

51, Properties of an Eilipse. The following pI‘OIJGI"_Eies“;I
listed without proof. They will serve as good exercises [
the student.
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R

1. All ellipses of like eccentricity are essentially alike and by
a proper choice of scales (and axes) can be made to coincide.
But ellipses of unlike eccentricity are unlike in “shape.”

I[I. Let P be any point on an ellipse and let @ and R be the
projections of P onto the major and minor axes (24 and 2 b)
respectively. Then

PR* P&
e T =1 Q

This fundamental property can be used to write down thé )\
standard forms of the equation. Indeed, it can be used(to
define an ellipse.  (Fig. 82.) A\

P

=
@

Fic. 82

&Y Feo®

L. The sum of the focal radu for any point P on an ellipse
Beonstant and equal to thewiajor axis;

PPy PF = 2a.

This 2lso is a fundamental property and can be used as a
definition of the éllipse. Thus an ellipse is the locus of a point
which moves so-Lhay the sum of ils distances from two fived points
¢ constanpn(Fig. 83.)
! Iv. Addngent to an ellipse makes equal angles with the
.f0c§]\ radii drawn to the point of tangency. This expresses
well-known optical property of an ellipse and is the source
o the name “foci.”  (Fig. 84.)

V. The perpendicular from the focus F upon the tangent
% P will meet the line joining the center and P on the directrix
Wresponding to F.  (Fig. 85.)
the L The perpendiculars from the foci to any_taﬂlgent meet

tan_gent in points which lie on the auxtliary circle * + y* =
¥ (Fig. 85.)
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Fia, 84 FIG.( 85\

EXERCISES } ~~\

Reduce the following equations to standard fnrm, compute the sem
major and semiminor axes and the ecccntrn:lts\\wrlte the coordinates of the
center, vertices, and foci; write the equatl(m@nf the directrices.

L7244 —1dx+40y+78 20

Ans. x -1 O +5) =1; a—wv’?, b =2, e='§%; c(1, — 5

it 7
VA, — 5 4V, VL 5 —vD), F(L, — 5 +V3),
F(l, =5 —V3)3%=—5+ V3
2. 922 4 1637 + 364 32y—~92=0.
Ans. ("""2)2 (’”? P21, a=4, 5=3 e=1VH C(-2D
V(z 1)\V( 61) F( 24N, 1), (-2 =V, 1);
xa— <2 + 18VT
Find the equation(s) of the tangent(s) to
8. 5y —3x+2y=0at 3 0. Ans. 3z +2y —9=0
,%Iﬁx’+9y2 32x 4 54y — 47 = 0 with slope — L.
Ans. x+y-{—7—0andx+}'—3 =l
.'\ 3 5. Find the locuss of a point which moves so that the sum of its distanc®
'"\»’ from (— 3, 0) and (3, 0) always equals 8.
¥
Ans. +




CHAPTER VIl
THE HYPERBOLA

52. Definitions. A hyperbola is the locus of e point wkﬁ'chf\
moves so that the ratio of its distance from @ fixed point and from
a fixed line is a constant greater than unify. The distancés

involved are numerical. A\
Fixed point F Focus O
Fixed line D Directrix 3N_

Fixed constant e (>1} Eccentri({‘cly
PE _ e Deﬁni(ig}l of hyperbola
PD ‘S

N
‘ ’\n
\E 4

W

\‘“,
O
AN

"4

\:

F1G. 86

Consider the line through the focus perpendicular to the
directrix, From the definition PF/PD = ¢/1 there are two
Mints V and V’ which divide the (undirected) segment FD,
internally and externally respectively, in the ratio of ¢/1.
Therefore V and ¥’ are points (on opposite sides of D) on the

89
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hyperbola; they are called the zerfices. The segment V' i
called the tramsverse axis. By symmetry there is another
point F and another line D" such that F’ and I’ would serve
in defining this curve. Thus a hyperbole has two foci and two
direcirices associated in pairs F, D and F’, D'. The midpoeint
of FF', which is also the midpoint of V'V, is called the center ¢
of the hyperbola. There is no part of the locus between the
vertices, each being on a separate branch extending to infinity.
There is symmetry with respect to C. There are two tdrigénts
through C whose points of contact are at an inﬁnitg’\distance
from C. These are called the asymplotes of the\hyperbola.
(See the discussion, p. 34.) The length of thes focal chord
perpendicular to the transverse axis (extended) is called the
latus rectum. A line through C perpendicularto the transverse
axis does not intersect the hyperbola in\real points. But the
portion of it, bisected at C, which 1§ ‘equal in length to the
paralle] segment through V containgd between the asymptotes
is called the conjugate axis. N

53. General Equation of.A“Hyperbola. Since the only dif-
ference in the definition af{an ellipse and a hyperbola pertains
to the value of the eg¢entricity, the general equation of each
is the same. [See (1), §47, p. 81.] But for the hyperbola
e>lande—4\>4CE4(eg— 1) »0.

Therefore aluecessary condition that Ax* + Bxy + Cy +
Dx + Ey + &= 0 represent a hyperbola is that B — 4 AC > 0.
(See Chapter XT for a fuller discussion of this condition.)

Agaim, ¥ the defining directrix Line is parallel to a coordinate
axisgBWill be zero and there will be no xy-term. The student

sheald make a note of this,
AN

{54, Standard Forms of the Equation of 2 Hyperbola. Byan

appropriate choice of axes the general equation can be reduced
to one of the following standard forms.

1. Transverse Axis Perallel to the x-Axis
2 = semitransverse axis
. L fx — B (v — A2 _
Fauation: el e it
Coordinates of vertices:  V(g,0), V/(— a,0)  V(h +a k), V'{k — @ B)




{544/ STANDARD FORMS OF HYPERBOLA EQUATION 91

Y Y
S | -
~ //r
\\\ //,/ :l
o - : 3 X
F + ,/, \\-.‘\ a v F
\fr P - \\\ !
- \\}\\\
7 D™
Fic. 87 Fic. 88 N
Coordinates of foci: Flae, 0), F'(— ae,0)  F(h+ ae, B, K — ae, B}
Coordinates of center:  C(0, 0) CL B
Equations of directrices: x =+ S = ,'ﬁ\g
o 2 ¢ (=B _
Bquations of asymptotes: = — 27 =0 PN w9
Semitransverse axis: a
Semiconjugate axis: Booyy
VA g
Eccentricity: R a—;_b-z >1
Length of latus recti :'2—?-2
R\ D

IL Trmsz:eré*g&iiis Parallel lo the y-Axis
&> semitransverse axis
vy 29
\ 2D
\\ E /7 //f

-._\_ 4
D

o §
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. b — k)t — ke
Equation: -—5-54-5:1 _(xbiz)_}_(}’az_)__]
Coordinates of vertices: V(0,a), V0, —a) V(L E+a), ViiLE—4g
Coordinates of foci: FQ, ae), F'(0, —ae) Flh b+ ael, F'lllik —w
Coordinates of center:  C(0, 0} Clh, k)

Fquations of directrices: » =+ g ¥y =k g
ioms of T i = R
Equations of asymptotes: — 7 + = 0 b + o ‘\uﬂ
Semitransverse axis: a
Semiconjugate axis: b B K
+ 2 o\ ¢
Eccentricity: e = 82;— b >1 )
25 £ "

Length of latus rectum: o ~.

Note: There is a minimum number of changes in the formulas
and these are natural and easy to remember if we continy
to use ¢ as the semitransverse a Thus the dencminatd
of the peositive lerm 1n the standargsform of the equation is i
be thought of as ¢

Note also that the equatmns of the asymptotes are obtamet{
directly from the equatlon.of the hyperbola by simply changin
the right-hand member!from unity to zero. The left-han
member of the equations of the asymptotes will factor into ti
linear factors. ‘The presence of the asymptotes aids in th
plotting of the‘h\yperbola

55, Comugate and Rectangular Hyperbolas. Conjugaie it
perbolas\are concentric hyperbolas the transverse axis of ead
of wihiith coincides with the conjugate axis of the other. I

\dard form their equations are




§55] CONJUGATE AND RECTANGULAR HYPERBOLAS 33

Center at (0, 0 Center at (&, &)

(R _r_y Gk gk
Conjugate | s2 i st £
hyperbolas | _ + y -1 _ = Be L (J’ - k)z

L 5%

It is evident that if s is the semitransverse axis of one it is the
semiconjugate axis of the other and vice versa. Conjugate
hyperbolas have the same asymptotes and the foci lie on a ¢
circle with center at the center of the hyperbolas. \

A rectangular (or equtlateral) hyperbola is one in which the\
transverse and conjugate axes are equal, in which case the

~

asymptotes are at right angles. R, ’~«.

Illustration 1. {a} Write the equation of the hypeth{a \'nth center
at (-2, 1), with transverse axis = 6 and parallelto the x-axis,
and with conjugate axis = 8. (b) Find tbg véccentricity, the
foci, and the vertices. (¢c) Write the equat;&ls of the directrices
and of the asymptotes.

s,'

.Y“.’/
£ \ ho )‘/
o /
o e
N\ Als
// !
\\ //f : 2 F(3,1))
A
21X V(1,1
/ Al
| 4 =3 —~2 =1 L=
| AN
hY
\\
\\
a \\
N Fic. 92

O
{%lﬁﬁon- (&) The equation is
(x+27_(-1r_4

| 9 16
by e-Y9TI6_5

T =2 ae =5,F3, 1), F'(=7,1), v{,1), V(=5 1).

(¢) Directrices: z = —2 £ brorx =—H x = =53

(2 -1t _ 1o
5 T

(x+2).

Lo e

Asymptotes:
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Ilustration 2. {a) Sketch the hyperbola 4x® — 3> 4 36
(b} Write down the equation of the conjugate hyperbola
sketch. :

O\

G

~ Y Fi 93

N\

Solution. (a) lﬁ‘étandard form the equation of the given hypet

is &\
e A

For ity w}, éompute

;w;5= 6,0 =23e= %’ ae = 3V5, V(0, 6), V'(0, ~6), F(0, 3"
QVF0, —3+E); asymptotes: ¥ = +2 .

‘\x{’ (b} The equation of the conjugate hyperbola is

m\./
) 4

© Yy _

\ . g m b

For it we compute
6 =3,b=6¢=5a =35 V(3,0), V(~3,0), FBV
F'(—3V/5,0); asymptotes: y = +2 1.

. 56. Reduction to Standard Form, The most general e
tion of a hyperbola with no xy-term present (axes paralle
the coordinate axes) is of the form
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(1) Ax» +Cy' + Dx +Ey+F =0, AC <0,
The condition B® — 4 AC > 0 reduces to AC < 0 in this case
since B = 0; it implies that A and C are of opposite sign.
This equation can be reduced to one of the standard forms by
completing the square.
Llastration 1. Reduce #2 -3 —~2x — 3y + 1 =0 to standard
form and sketch.

Solution. A ¢
2—-2x+1—-(+y+H=-1+1-5% '.\"“.\
(x—l)'*—(yﬁ-?)“:—i' g W
— 1y 1y T
—("L)+(y‘f2)=l. A

1
4 4 £ &/
This is a rectangular hyperbola with ¢ = & = 1,¢&V?2, V(1,0),

Vi, =1, F(L, —} + §V2), (L, —} — }\2]rasymptotes:
A

A

y+i=x -1

) \FIG. 94 F1G. 95

'iﬂi}s?i'ation 2. Find the points of intersection of z* +4* —4 = 0
N\ and 4 22 — 3 — 8 x = 0 and sketch.

Solution, These curves are an ellipse and a hyperbola respectively.
Algehraically it is easy to solve the equations simultaneously for x
and y: solve the first equation for 3 and substitute in the second
equation. The points of intersection are (—% £13V2), (2 0).
In standard form the equations are '

ey G=1 ¥
4+T_1 and 1 4
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57. Equation of a Hyperbola Referred to Its Asymptotes,
In §6 we remarked that skewed axes were sometimes very
useful. If the asymptotes are used as the coordinate axes
the equation of the hyperbola takes the form

(1) 1y = k. Y
The standard equation
v 2 Plxy) . &\
Eﬁ - JJ!:'L2 =1 — Sy
¢\
can be written in the form 7/ O
ay + bx)(ay — bx) N
(ay ) ay o e — 0 Fic. 9% )

L

o

N\
where the asymptotes are y = + pE2 Tt we gall these asymp-

totes new coordinate axes 3’ and %’ respéetively, the hyperbola
will have the equation {

NG
@ wy = ST
This is of form (1). o

58. Equation of a Tamgent. A line which intersects a
hyperbola in two coingident points is a tangent. For t_he
hyperbola there willbe two tangents [real and distinct, com-
cident (with an¢asyhptote), or complex] with a given slope.
We summarize the formulae for tangents to a hyperbola.

N\ ‘2 HYPERBOLA
\\ 7 (and Conjugate)
) \/ 1 i _
..s\ Eé - E = 1
AN 2Ly
J ot bt I
G=Br -k _,
@t F -
_a—m {y— ke
B
‘TANGENT
At (%, ) With Slope m

oy _ ¥y
a?

2 y=mx £Vaom — 0
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xx1+yy‘=1 y=mx VP — a'mi

bz
(x k!(xt ) (J’ k)b(f’l_k) =1 y—k=m(x-h)im
_G=hla—h) (x1 B G=BO=k k)(yl B o1y k=mp— Vi

a2

Note that for real tangents with slope s the quantity under the
adical must be positive.  If, for a given slope, the tangents

re real for a particular hyperbola, then the tangents are com-

plex for the conjugate hyperbola.

llustration 1. Write the equation of (a) the tangent and (b} t}re
normal to the hyperbola 162 — 932 — 128x — 54 ¥ 4. 31 =0

at (3, 0). €

\\\

7 \ 3 ¥
\ » Fic. 97
Solution. (&) The hyperbola in standard form is

(x—4)2"(y+3)2=1
9 16

and the equation of the tangent at (3, 0) is
-G -4 _@+30+3) _
o) 16

:'x\'

N\
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ThisreducestoZOx +%y—-5=0.
{b) The equation of the normal is

Solution, Here a* =3,

b=1 m=2; and the

equations of the tangents

Are
are listed without proof. They Wil serve as good exercises
for the student,

1. All hyperbolas of hke eccentnmty are essentially alike

and by a proper choice. of scales (and axes) can be made 10

¥y = '.ﬁgﬁ(x ~ i)
y=2x+ 1
It is left as an exercise for
c01nc1de But hyperbolas of unlike eccentricity are unlike in
“shape.”

Tilustration 2. Write the
equations of the tangents
hY
LY
\\ 1
hY
N,
-1 7
the student to show that )
the points of tangency Fic. 98
II. LetP be é:q\y pomt on a hyperbola and let @ and R be the
projections of P onto the trans

to 2% - = with
slope 2.
are (1, 1} and (-1, —1). 9.\
59. Properties of a Hyperbolad :\The following propertles
verse and conjugate axes (2 a and
2 ) respectively. Then

PR P@ 1
_____ . & .
a
=]
7 K
Fic. 9 Fic. 100
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This fundamental property can be used to write down the
standard forms of the equation and can also serve as a definition
of a hyperbola.  (Fig. 99.)

1II. The numerical difference of the focal radii for any point
P on a hyperbola is constant and equal to the transverse axis:

| PF' — PF| = 2a.

This also is a fundamental property and can be used as a defi-
nition of the hyperbola. Thus & hyperbola is the locus of a point
the mumerical difference of whose distances from two jized potnis|s)
aconstant,  {Fig. 100.) O

IV, A tangent to a hyperbola makes equal angleswith the
focal radii drawn to the point of tangency. (Fig. 101)

V. The latus rectum of a hyperhola is a third proportional
o the axes. \M

VI. The product of the perpendicularsxoﬁ'the asymptotes -
from any point on a hyperbola is a constant. .

Fic. 10% Y \\ ' Fic. 102

. VIL. Any ellipge, and hyperbola which have the same foci
mtersect at rngt, angles. (Fig. 102.)
N\v
\/ EXERCISES
Rﬁdu?&jt'he following equations to standard form; compute the _semi-
t?nsyemg and semiconjugate axes and the eccentricity; write the coordinates
%mqhnter, vertices, and foci; write the equations of the directrices and
} mﬁ'jtg]';es; compute the latus rectum; write the equation of the conjugate

e gt s,
T T =L e=2 b =v2, a =5, =2
C(—2,3), V(0. 1), V(= 4, ), F(- 2 +v6, D, F'(—2 =V6,3);
directrices: x = — 2 + £V, asymptotes: ¥ — 1 =& —22(" +2)
_ﬂ’_‘i;—zf.}-%—ﬂfw—l.

latus recturn = 2; conjugate hyperbola:
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g 4x—yi42y+3=0
Ans. ——+(-”_1) =1; a=2, b=1 ae =v5 ¢ =3V5 C{0), |

V(0,3), V0, - 1), FO,1+v5), F'(0,1 —V5); directries:
y =1 + £#V5, asymptotes: ¥ —1 =+ 2x; latus rectum =1,

2 — 2
conjugate hyperbola: il — -@4—1) =1.

3. Write the eguation of the hyperbola with one vertex at (5, — 4) and

with asymptotes y+ 4 = + &{x — 3). Ans =3¢ M. I"
5. i g ‘

4, Find the equation of 32 — 3 — 3 = 0 referred to its asyml;xtote}‘as
axes. An» } Y =1

Fingd the equation{(s) of the tangent(s) to R N 5

b. (x -1 —3r —1=20at{© 0. O Ans. x =0

8. 9(x 4+ 1)? -2 +9 = O with slope 3. Ans. S0C2(x + 1) = V1T
7. Find the locus of a point which moves so that\the numerical difference

of its distances from {(— 3, 0) and (3, 0) is alwaysA\\' Ans LS L
4T B

B. Find the locus of points from which the~ sound of a gun and the ping
of the ball on the target can be heard mmulta‘neous]y
Ans. A hygerbnla with gun and target at the focl
9. Show that a? — 232 — 2z —dg*— 1 = 0 plots two straight lines.

a"\\\
¢. LN\
LA
‘\
7 N/
PN
2
R\
3




CHAPTER 1X
CONIC SECTIONS

60. Sections of a Cone by a Plane. The parabola, ellipse,
and hyperbola are all members of a class of curves called comic, O\
sections. A circle is a special case of an ellipse where the majon™
mnd minor axes are equal. It was known to the early Gréeks
that these curves could be obtained by cutting a conewitl a
plane, and the name derives from this fact. \\

Consider a right circular cone with vertex A ang'a tangent
yhere S touching the cone along the circle Cyy Let the plane
7 tangent to the sphere at F cut the cone, jnthe curve K and
the plane « of the circle C in the line DX\Then the curve K
isa conic with focus F and directrix DY

3

Fic. 103

For consider any element of the cone cutting K at P and
Cat B. Then PB = PF since any two tangents to a sphere
101
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from a point are the same length (solid geometry). Further,
every element such as PB makes a constant angle 8 = GEV
with plane v; and a perpendicular PH upon D from P make
a constant angle ¢ = EGV with v. Now from solid geometry
it is known that the lengths of any two lines from a point 2
to a plane v are inversely proportional to the sines of the angle
which the lines make with the plane. Thus

PF _sing

{1 PH = smno constant, A
and K is a conic with F the focus, D the directrix, and €3 5;11 ﬁ
The vertex of the conic is V. &N

If the cuiting plane is perpendicular to the axis'ef the coneit
cuts out a circle and ¢ =0 = e. Thus a.'”c}}cle is a conit,
section with eccentricity zero. If the cu{ting plane is paralid

(1) C"E‘:ﬁé" Parabo| Hyperbola
(2) Elipse
Fs104 Fic. 105 Fic. 106

R a generator, ¢ = ¢ and ¢ = 1, giving a parabola. If t¥
'\‘;cutting_ plane lies in between, ¢ < 8, ¢ < 1, and an ellipse ¥
determined. If the cutting plane is inclined so that ¢ >
e > 1, then it will cut (both nappes of) the cone in a hyperbold

61. Degenerate Conics. It is evident that a plane can a¥
cut a cone in (a) two straight lines (generators), (b) one straig
line (two coinciding generators), or (c) one point (vertex).
of these are called degenerate conics. And we may think of

(a) As being the limiting case of a hyperhola as the cutti%
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B

Jane moves into a position containing two distinct generators
i the cone. An algebraic example is x* — 3* = 0, (AC < 0),
wperbola coinciding with its asymptotes.

() As being the limiting case of a parabola as the cutting
Jane moves into coincidence with one generator. An alge-
raic £xample is 3* = 0, (AC = 0), paraboela coinciding with
i axis.

{c) As being the limiting case of an ellipse as the culting
lane moves into a position containing only the vertex. An
Igebraic example is x* 4- 32 = 0, (AC > 0), ellipse coinciding
vith its center, O

Analytically there is another degenerate ¢onic, namely a-pair
f parallel lines. An example is y(y — 1) = 3 ==,
AC = 0), parabola. This cannot be gotten as a se}tion of
 cone.  However, it can be obtained by cutting\a” cylinder
fimiting case of a cone as the vertex recedes juﬁnﬁnity) with
2 plane parailel to the axis. N\

N ¢
RE

N




CHAPTER X
TRANSFORMATIONS OF COORDINATES

62. Transformations. A transformation is essentiallp]
substitution of a function of one or more variables fota g
variable. Thus the substitution of x = 51" in ¥ ,='~f(x) yie
¥ = f(5 ") and this in turn says that y is some (Gther) functi
of 2, say ¥ = F(x'). A {ransformation of ‘Kh{s character &
scale transformation since the scale (in-ihé x-direction) ot
is affected. (See Property 1 for paral@la,, ellipse, hyperho
§§ 45, 51, 59 respectively.) 4D

There are many types of trangformations in mathemati
and we now study two particulafr ones important in analy
geometry. By making use of\one or both of these it oft
happens that the equation~of a graph can be simplified
some special property of.the locus can be preminently display

63. Translation. Qibout the simplest of transformations
franslation of th{@xes parallel to themselves,

Y
¥
P\Z,
O

\“' p(x,)’)

O POy
N Y ,
~O T X

ho ik y -
Q x
Fic. X7

Let 0X, OY be a set of rectangular axes and O°X’, 0’
another set, 0X’ parallel to 0X and O'Y" parallel to 0%,
directions remaining the same. (Fig. 107.) Then, if W

104
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rESpeC'E to these axes a point P has coordinates P(x, ) and
P, ), it is evident that

{1 x=x + Bk
y=3+4k

where (k, k) are the coordinates, with respect to 0X and 0V,
of the new origin .

Equations (1) are the equations of the iransformation. By
making these substitutions in a given equation a new equation
of the same graph is obtained, referred now to the new( \
(translated) axes. 2N\

lMustration 1. Translate axes to the new origin (2, 3) gﬁa}‘thus

reduce the equation of thecurve x2 — 42 — 4dx 24 {\— 36 =0
to a new eguation.

ll

Solution, Here we must substitute )
x=x + 2’ ..'\:’
= yr -“— 3 4 ‘t N ;

in the given equatior, ThlS ylelds o
o 422 — 4y + 3 — 4 +Z}+24(y'+3) -36 =0,
which reduces to N\
27 L9 _

{1} ’ {4”\ I 1,
a simpler equation, "The process, here, is equivalent to complet-
ing the square. For the original equation, in standard form, is
found, by this p‘s;oCess, to be

(2) \ﬁi}élﬁ - (l-_l—s)- = 1 (ahyperbola).
Settmg} — x4 2 and y = ¥ + 3 in (2) will obviously reduce
thl&equatlon to form (1).
A'translation can always be found which will remove the first-degree
\tenns from the equation of a (non-degenerate) conic section.

llustration 2. By a translation transform the equation x* —
2%y — 542 4+ x — 3y = 0 into one in which there are no first-
degree terms.

Solution, Substitute x = ¥’ + # ¥ = 3" + kinto the equation and

hence determine what # and & must be in order that the new
equation have no first-degree terms.  The transformed equation is
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o+ B =20 (Y + ) =50 T kP () =30+ ) =0,
and this reduces to

1) x2=2xy =55+ @ k=2 k15 +(—2 h=10k—3)y
fhE—2 hk—3 kP +h—3 k=0,

We must set the coeflicients of ' and ¥ equal to zero. Thus

@ 2h—2k+1=0,
2k —-10k —3 = 0.

Solving these simultaneously we get

Ko\
h=—% e\
kE=—% g >
and with these values of k and % the transformét’iﬁ’n reduces

the equation to AS
X7 =237y — 597 — gy =BNY
Note that while the linear terms have b‘én removed the seme
quadratic terms are present as bef(}réx;"A transiation will not
remove terms of the second degred\Jrom an equation of second
degree. Indeed a translation always leaves unchanged the terms
of highest degree in any equation thus transformed.

64. Rotation. Let a seftof rectangular axes 0X and 0%,
as a rigid system, be rotated counterclockwise about ¢ through
a positive angle ¢ into-a new position OX' and oY'. The
substitutions descrihifig such a transformation are called the
formulae for thecretation

of axes. Wel eonsider v
only the,ease where v P(x,y}
8 < 90°¢bit the final re- PL')
sults held for any angle. Y X!
Prem Fig. 108 we see el
~that - 1P
VOA = x = 0B — AB e -
= 08B — CD, ) X A B
and
AP =y = AC 4+ CP
= BD + CP. Fic. 108

Further, from trigonometry, OB = ¥’ cos 6, CD =¥ sin #
BD = x'sin 6, and CP = %' cos 9. Hence

)
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(L) x=xcos g — y sin g,
y==x'siné + ¥ cosé.
Equations (1) are the equations of the {ransformation. By
otating axes the equation of a graph may be simplified.

Tlustration. For the equation x* +4 xy 4+ 32 — 1 =0 rotate
axes through 8 = 45°.

y Y
2

AR N

i 109

Solution. The substitu‘t(&ﬁé' reduce to
V2
2
{ N \/_ '
(o) y= "2—2 &+ ¥

...:."’ _ o ’
.Q’\} x - (x y)l

N\

Smce‘gi,p\)‘.s" = cos 45° =v2/2.

The transformed equation is .

1 f"?\}_»?‘ x.-yr + y;g;l T 2(55!2 _ yrz) + :}(x’ﬁ + zxryf +yrg) -1 = 0,
which reduces to

3x2—y?r—1=0.

This 35 not only a simpler equation (the xy-term has begn re-
moved) but it is cssentially in standard form and from it the
graph (hyperbola) can be constructed with ease. It would be

much more difficult to plot the curve with respect to the original
axes, .
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By combining translations and rotations @ curve may te
referred to axes in any direction with any point in the plane as
origin, These transformations will change the equation of
the curve, but the curve itself will not be altered in any way —
it will only be moved from one position to another. Transla
tions and rotations do not affect the degree of the equation
to which they are applied. They do not in general give the
same results when the order of application is interchanged. . £

The next chapter is devoted to the analysis of the generd
second-degree equation by means of these transformatiog’srf

EXERCISES N\
1. Given the equation 2x —y 42 = 0. {a) Translate"’the axes to the
new origin (0, 2). (b) For the egquation resulting from (a)“r\tate axes througi
an angle 6 such that tan ¢ = 2,1ie., 8 = tan™ 2.
Ans. (a) 2x -y =0; (b) ¥ =0
2. Translate axes to the new origin (1, — \‘Q\and find the transformed
equationof x* — 32 — 32+ 3x — 4y — X0 Ans. ¥y ="
3. Rotate axzes 907 and find the transfqrmad equation of y2 = 4 px.
Ans. £t =-— 4p¥.




CHAPTER XI
GENERAL EQUATION OF SECOND DEGREE

65. Classification of Conics. We have seen that the general
equation of a conic section is of the form O\

{1 Axt + Bxy + Cy*+ Dx + Ey + F=0 . O

Conversely any equation of the form (1) represents 4. conic,
real or complex, proper or degenerate. To distinguish four
cases we first define \%

24 B D| 0
N
A=| B 2C E RS
D E 2K

as the discriminant of equation (1). \Fhe discrimil_lant_ plays
an important role in the classificatigir of conics, which is out-
lined as follows. o

c@méaﬁon of Conics
CasE CONDENONS TyPe oF Locus
AKX '

1 B — &@C —0and A =0 | Two parallel of coincident lines.
\? {Degenerate parabola.) )
Il | BT AC #0and A =0 | Two intersecting lines or one point.
A {Degenerate central conic.)
11,382 — 4 AC = Gand & 0 | A paraboia. _
WA B —44C#0anda =0 | A central conic: An ellipse (veal or
\ / complex) if B —=4AC < 0; a
hyperbola if B* — 4 AC > 0.

—

The conic is degenerate if and only if 4 = 0; it is proper if
and only if A = 0. We may combine cases 1 and III and
cases 11 and IV by saying equation (1) will represent _
_(a) A parabola, two parallel lines, or two coincident lines
if the terms of the second degree form a perfect square;

109
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(b) An ellipse, a point, of DO locus if the terms of the secong |
degree have conjugate complex factors; '

(¢) A hyperbola or two intersecting lines if the factors o
the second-degree terms are real and distinct.

We have also noted that the axis of the parabola and the
axes of the ellipse and hyperbola are #0f parallel to a coordinate
axis if and only if the xy-term is present.

66. Removal of the xy-Term. A properly chosen rolalis
of axes will always remove the xy-term from an equation 6f\lk
second degree. For if we apply the rotation formulgelto
general equation we get as the coefficient of the x"y/-term

_ (A — C) 2sin 8 cos 8 + Blcos* 6 — sii 9).

A N\ N L3 4
If we equate this to zero and make use of\the trigonometr
identities 2 sin 6 cos # = sin 26, cos® @ —\sirf g = cos 26, the

resalt is \\ ’
I ey
1) tan 28 = TN

An angle 6, between 0° and 90%s always determined by equ
tion (1) for any values of 43"B, and C. A rotation of aw
through this angle 6, theréfere, will produce an equation of the
conic referred to OX' \and 0¥’ in which there is no x'y'-tem
Obviously the pﬁ:{is ‘Could be suppressed from the final eque
tion; they are te%a ed only to show clearly that the new ax

have been derived from old ones.

AS :
When tan'2 § = — ? C it results from trigonometry that
‘§ sind = \jl — (:20—'8 2 89

A T 577
~O 008 8 = 1+(:20828.

We need these for the equations of the transformation.

87. Reduction of the General Equation fo Standard Fortt
Theoretically the reduction of the general equation of the
second degree to standard form can be accomplished by ﬂﬁ
rotating axes to remove the xy-term and second conplet™
the square on the transformed equation. Practically
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e

leads to computational difficulties in most cases because of the
irrationalities introduced by the square roots in the formulae
for sin 8 and cos @ in (2), § 66 above.

In order to illustrate the theory without undue numerical
complications the following example has been prepared so as
to avoid the irrationalities.

Illustration. Reduce the conic 8 x%-+24 iy +yvi+x42y+1=0 to
standard form by rotating axes and completing the square.

Y
<
-~
~
™~
_1
2
Solution, /)0
O tan 26 =
N\ c0s20 = 7'
»,';\ sinf = %
P cosf = % .

/ w

~O
\Ihe formulae of rotation are therefore
= 34 — 3y,
y=1B2 +45),
and these recuce the given equation to
17x2 -8y +2x +y +1=0.
On completing the square we get, as the standard form of the coniC
{a hyperbola),
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(x' + 77 + o — )
_ {23)(23) (23)(23)
(ADA7E2)  (17)(16)(16}
Even with such numbers as these for ¢ and & it is not difficult to
plot the hyperbola.

EXERCISES

Remove the xy-term, complete the square, and trace the curve.
1. 92+ 24 xy 4+ 1632 +90x — 130y = 0. Ans. (x' =12 =6(y+3)

— — 2 ; — z N\
2.5x2+8xy+5y’+\/2x—-\f2y=0‘ Ans. xT—{—(‘}'I\‘l}‘“.—,l,
¥ )

68. Central Conics. It is usually better to translate awes
first and to rotate afterwards. The translationi$to be made
to the center for the central conics, circle, e]lipsé}and hyperhola
(or degenerate cases thereof). \

For a ceniral conic B2 — 4 AC # 0 az}ﬁ‘,'in terms of the co-
efficients of the general equation, the-epordinates of the center
are )

. _2CD& BE
M T BSHAC
5 _24E - BD
B - 4AC
Note that these do¢hot exist for the parabola, where B -
4AC =0, A\
The translated\conic has the equation
2 N By 4 Gy — LA
2 Ax+ Bry + O — 5 5T A 0.

.:‘\‘~ . .
Rotation is now performed on equation (2}, thus completing
the feduction.

& :illlustration. Reduce the equation x? 4+ xy + 32 —3x —1 =1
V" to standard form by first translating axes to the center and thef
rotating.
Solution. We compute
B? —4 AC =—3 (ellipsc),

21 -3
A= 1 2 0| =-—24,
-3 0 =2
h=2,
k=-1,
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F1c. 111

N
Making use of equation (2) the equation of the coiic*referred to
axes parailel to the original axes and through. the center of the

ellipse is 4
£tz + 24 —0)~x\'
Now w
tan 28 = m

which tells us that 26 = 90° andﬁ = 45°,
The formulae for rotation are

form, tO\"\

g
5B
/)
117
rt
(‘D
%
('D
i,
=
T
o
Ei
=%l
=
S
5
g
[#%]
H—-—
3
+
\i‘w
3
]
go
&
=
7]
-t
5
B
B
g,

N EXERCISES
Translate axes to the center, then rotate these into coincidence with the
%es of the conic, and sketch.
L1994 4yy 1 16y — 212 % + 104y — 356 = 0. s
Ams. 19z + 47y 41657 — 1200 = 0,1- &0 _ 4 G
L3412,y — 2,2 41824+ 8y +12 =0C.
Ans. 3x2+12xw — 237 -1 =0,°

s yt

___ 1
T [5

o
P

CEREEY
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69. The Parabola. The general parabola Ax? -+ Bxy 4 (y |
+Dx+Ey+F=0,B—4AC = 0, can best be treated by
computing the coordinates of the focus and the equation ¢
the directrix, which are given by

 [2CE +D{A —B) 2DE —C(A - B’))
Focus: (— 2C= + D7) : 5" + D
Directrix: 2Dx+2Cy — A" - B =0, ;

2 -
where A" = CF ~ & B = aF - 2, ¢ - B2 =24
4 4 04\“\
D:zl_i’f?—é_Z_GD, E =DE_—4_2,B_F. O

These formulae seem a little forbidding but with the informa-
tion they yield the vertex and the axis can tié:\determjned and
the conic readily plotted. Note that thi¢' method involves
neither translation nor rotation of axesiy”

_ N\
Ilustration. Sketch the conic x24-2 Tyt 212 x—2 y+4=0,

Solution. Since B* — 4 AC = Q.thé conic is a parahola; A = -3
and the parabola is proper. , We compute 4’ = 3,8 = 3,(' =4

D =-2, E' =-5 Tha™

coordinates of the fofus Y

turn out to be {—2,&) and 2,

the equation of, the direc- +D

trix is 21 — 29~ 3 = O, g

The axis passés through the F e

focus andldy perpendicular / 1

to the\ﬂjrectrix; hence it v P

equationisy —§=—(x+%), .

ich reduces to ¥y = —ua. v X
«\The directrix and the axis —= 7 — T
% mtersect at (—2, 3) and / %

the vertex is halfway along
the axis toward the focus
from this point. The vertex is therefore at (—1, 1).

Fic. 112

EXERCISES
1. Sketchtheparabolaxt + 2y + 32 —2x 46y —2 =0. .
Show: F(— % — §); equation of directrix, 4x — 43 + 7 =0 equati®
ofaxis, x + ¥ + 1 =0; V(- & — }). :
2. Sketch the parabolas® —4xy + 42+ x—v -1 =0
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Show: F(33 &) eguation of directrix, 4x 4+ 2y — 11 =0; equzition
ofaxis, 10x — 20y + 3 = 0; VES 1.
- 70, Invariants. Often the general equation is written in the
form

1) at+2hxy+ 02 +2gx+2fy+¢=0

where the factor 2 is inserted in the xy-, x-, and y-terms for
later simplification in formulae. For this form of the equation
we define

=a-+b .\:\
C=ab-— I e\
J=abtbct+ca—P—g—1,
la kb g O
D=k b 5} A
g fc '

{There should be no confusion between this\\“:@” and “D”
and the C and D we have been usmg as\eoefﬁments in the
general equation. )
~ Each of these four quantities is mvanant under rotation of
axes; that is, they are equal respectwely to the corresponding
quantities after a rotation is pérformed. (I, C, D, and the
sign of J are also invariant\under translation.} They are
useful in the classification of conics as in the following table.

RS
A\ \ Detail
~» Elassification of Comics

Case Cﬁg@smms oN THE Invariants | TYPE oF Locus
RN C > 0; I, D opposite in sign, | Circle
Propen 3% G=bhk=0
Songc; ; C > 0; I, D opposite in sign Ellipse
Y{#D C<0 Hyperbola
cC=0 Parabola
C > 0; I, D same in sign No real locus
C<0 Two intersecting lines
Degenerate C=07<0 Two parallel lines
*onic; C=07=0 Two coincident lines
b=0 C>0 A point
C=0J>0 No real locus

Q"
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The student will find it worth while to prepare a simily
table for the equation Ax* 4 Bxy 4 Cy* + Dx + Ey -+ F =)
using the two invariants B? — 4 AC and A as already defing
(but simply related to invariants C and D of this paragraph)

T1. Systems of Conics. Two conics intersect in four point
(4 real, or 2 real and 2 complex, or 4 complex) since each equz
tion is of the second degree. If IV = 0 and V = 0 repress
two conics, then U + BV = 0, for any constant k, is a coul
through the points of intersection of {J = Q0 and V =0, NS
Systems of Lines, §26; Systems of Circles, §37.) { Ohe con
dition placed on the conic U 4 £V = 0 will deterniine .

Iustration 1. Find the conic which passes throfigh the interse

tions of the ellipse x2 — xy + 32 — x + 1-X D and the hyperbok
¥+ xy ~— ¥+ 3 —4 = 0and also throggh (1, 2).
Solution. The equation is of the form, />~
@ —xy+r»—-x+1 +k(x2,éﬁ:xy —+y -4 =0
and this must be satisfied by (,2). Hence k = 1 and the fin
equation of the conic sought'is
2x% —x -[;:ji,'—' 3 = 0 (parabola).

If U=01is a copicdand L = 0 is a straight line, thes
U'-l- kL2 =0 repeeSénts a conic tangent to U =0 at the
points of interséetion of U = 0 and L = 0. For we md
think of L* = Ohas a (degenerate) conic (two coincident Tines
Intersecting\&/= 0 in two pairs of two coincident points eadl

]]Iustrg:tjbﬁ 2. Findtheconictangentto U = 2 — 32 — ¥y +1 !

atthe points of intersectionof U = Qand L =3z — 2y — 1 =

& passing through (-1, 0).

A Solution. The equation is of the form
-y —y+ 1) +e@x =2y — 1) =0
Substituting (—1, 0) into this we get & = —%, which yields as
equation of the conic sought
=122+ 12y —6x 4+ 12y — 7 = Q.
(See the Illustration in § 73.)

o~

72. Conic through Five Points. Since the general equati”
of the second degree has five effective coefficients in it the
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is one and only one conic passing through five arbitrary points
(no three lying on the same straight line).
Hlustration. Find the conic passing through (1, 1), {2, 1), (3, —1),
(—3,2), and (—2, —1).
Solytion. By substituting these points into the general equation
A+ Bxv+ Cv + Dx + Ey + F =0 we obtain five simul-
tanecus equations.

A+ B+ C+ D+ E+F=0,
4A+2B+ C+2D+ E+F =0,

N

94 3B+ C4+3D— ELF=0, O
9A—6B4+4C—-3D+2E+F =0, O
4A4+2B+ C—2D— ELF=0.

Under any circumstances the solution of this system jg2tedious;
but by setting A = 1 and using determinants we'geﬁs:\ A=1,
B=—1,C=-9 D=-2 E =4, and F = 7\XI¥e conic is,
therefore, \\

xz — xy --9y2—2x+4y+?.%—’10.

It is better, however, to make use of the the‘c;rjf of systems of conics
as follows, The pair of lines through say (1,1), (2,1) and
(3, =1), (=2, —1), may be thought'of as a degenerate conic; its
equation is the product of the equatlons of the two lines or

(1) [ENg Ny + 1) =0
Similarly A\
@) (2x-33&~1’)(2x+y—5) =0

is the equation of ¢ the (degenerate) conic consisting of the two
lines joining (1,,1\) {—2, —1) and (2, 1), 3, —1). These conics
intersect in tthour points (1, 1}, (2, 1), (3, —1), and (-2, —1).
Hence _ &
o, %(yﬂ) +k2x -3y +1D@x+y-5)=
is acon'ic through these four points. We'can determine & so that
i, Da'sses through the fifth peint ( ~3,2). Wegetk =—yand
€ Conic is again

2 —xy -9y —-2x+ 494+ 7=0,
13, Equation of a Tangent. The equation of the tangent to
A + Bxy + Cy* + Dy + Ey + F = 0 at the point (xy, y1) 18

Wy 2 Axxy + B(xy; + %) + 2 Cyyi + D{x + x1)
+E@y+y)+2F =0



N
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In the notation of §§ 69 and 70 the equations of the tangens
with slope m are
C —mD +V(—D)YCm* + Bm + A) =

=4 » O

C
Ilustration. Find the equations of the tangents to x® — -
y4+1=0andzx*—12xy +12» —6x+ 12y — 7 =0atte

point (1, 1.

Solution. By (1) the tangents are respectively
2% -2y —(p+1)+2=0, or 2x—3y+LED

and . O

9% — 120t +5) + 24y — 6(x + 1) + 12(» + D14 =0,

or 2x 3.}' +1=0

Since the equations of the tangents are the same the two conics an
tangent to each other at the point (1,,1). > They are also tangen
to each other at (-1, —2). (See ILletratlon 2, §7L.}

(2) 3 = mx +

@

EXERCISES™

L. Find the conic passing throqgﬁ."the intersections of x* — 3¢ =1 an

at 4 3® = 4 and the point (0, 3) 3% Ans. 322+ — 9=l

2. Find the conic through the five points (0,0), (1,0}, 1), (=1L 2

and (— 1, —1).. W Ans. 3::1-—2:\:;|,r—-3}:9’—3:4:4—3'—u

8. Find the equatlonsﬁf\the tangents with slope 1 to x4 xy+y2—3 x—1-4

Ans. C' =— QQ:‘* C =3 D =— 3; the equations of the tangert
arex 5y 1=0Candx —y—7=0,

3



CHAPTER Xil
POLES AND POLARS

74, Definitions and Theorems, If P(x,, y1) is on the conic

(1) Ax* + Bxy +Cy +Dx + Ey+F =0 \

N
& N

the equation of the tangent at P is

2  2d4Axxi+ By +x) + 20 + Dlx + x;)“
+Ey+y)+2F=0 N

Whether P is on the conic or not, equation (2) R?msents a line
called the polar of the pole P.

Without proof we list the following theorexhs concerning poles
and polars.

[. If the polar of P, passes through Pg, then the polar of
Py passes through P,.

I, If the polars of P, and P2 mtersect at P, then P is the
pole of PP,

R

Fic. 113

IIT. The polar of an exterior point P, is the line joining the
ints of contact of the tangents drawn from Pi.

IV. The polar of an interior point P is the locus of the point
of intersection of the tangents at the extremities of every chord
through p,

119
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V. The polar of a focus is the corresponding directrix.

VI. There is no (finite) polar of the center of a conic.

VIL. Let P be the pole of p and let a secant through P inter.
sect the conic in @ and R and pin S. Then -

PQ __5Q
PR™ SR

QR is said to be divided harmonically by P and S.

Illustration 1. Find the polar of (3, —2) with respect to the ccnic
x—yv—x-+1=0

Solution. Substituting (3, —2) into the equation (2) of‘the pola:
we get, upon simplifying,

3x—Ty+1=0 'mf\‘\'
Tllustration 2. Find the pole of x — 33 +4.="0 with respect to
¥ —xy+x+y=0 N

Solution. Let {x;, ) be the coordinate&f the pole. Then
2x—n+ 1)-”5—(11—1)3?"‘(9514'3’1) =0

is the equation of the polar and: Biust be the same as x —3 y+4=0.
Hence the coefficients musbbé proportional; that is,

2-”51—3—'1..4-1:35 —1 x1+}’1

1 3 4
Whence , \
\\" Bx —3nm=—4
O\ u—3n=4
which y}el&s’ * = —2, ¥, = —2 as the coordinates of the pole.
N\ EXERCISES

1. ﬂ\lmhrespectwiixz 3 —x+2 =0 find (a) the polar of (— 16
(b}thepoleofx+y ~1=0, Ans. @ Tx+12y —5 =0, (b) (— &1
{2} Verify theorem 1 for the conic 2y —y¥ 4+ 2 =0 and the two points
Ipoles) Py(1,2) and P2(2, I).
V' Ans. pr=3x—3y+1=0, which passes through P pr=5x—4y+3=0
which passes through Py,
3. Find the point of intersection of the tangents to xy —x — ¥ — 2=
at the points whereitiscuit by 3x — v+ 1 = 0. Ans. G, -8




CHAPTER Xill
DIAMETERS

the conic. A diameter may be thought of as either a segment
of a line or an entire line. Two diameters are said todse\con-
Jugate when each bisects the chords parallel to the other
Yol
2
{ellipse and hyperbola). (Nete: If “a” and\\*‘b” are inter-
changed in the formulae of the ellipspyand hyperbola they
must be interchanged in the follomng Tormulae. See Notes,
1§48 and 54.)

. Every diameter is a stralght *]ine through the center and
conversely. AN

II. The tangent at an end of a diameter is parallel to the
system of chords defining that diameter.

The following theorems apply to the central comcs— +

&
&
N
o &/ —
e
A /
3 7
"
~O
N/ X
—
Fic. 114

121

N
75. Definitions and Theorems. The locus of the midpoints, |
ofa system of parallel chords of a conic is called a diameter Of s,
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III. Tangents at the ends of any chord intersect on the
diameter bisecting that chord.

IV. The polar of any point on a diameter is parallel to the
system of chords defining that diameter.

V. If ¥ = mx is a diameter, the equation of the conjugate
2
diameterisy =% ﬁfm x. Or again, the lings y = mxand y -

m'x are conjugate diameters if and only if mm’ = ¥ g-

VI If Pilx,, yl) is on the conic, the equation of the diedtmeter
xx ‘1 ygiu = 0. .\

VII. H ¢ and bl are the lengths of the ﬁemicomugatt
diameters, then a2 + 02 =g>+ P, a const}mt Moreovet
the angle ¢ between the conjugate dlameters is given by
SLI] 8 = abX albl \

YII, If PP, and ©.Q, are con}ugat'e diameters, then the
parallelogram formed by the tangents to the conic at P, Ps
€1, @Q: is of constant area 4 b, \ "

IX. The equations of the ellipse and hyperbola referred 0
a pair of conjugate dlamegerg, ‘as oblique axes are respectively

N2 2
e gl

(See §§ 6 and 57

Nole on the hyperbola: 1f one of a pair of conjugate diameter
meets the hypetbola the other does not; instead it meets tht
conjugate/Byperbola. The length of a diameter is to b
measu:\ld ‘therefore between the points of intersection with ti
hypefbela or the conjugate hyperbola, whichever applies.

FHor the parabola y* = 4 px, theorems I-IV and the tw

‘folIowmg apply.

X. A parabola has no system of conjugate diameters.

XI. If y = mx + k is a system of chords of slope m, ther
¥y = 2p/m is the equation of the associated diameter. (Ff
&' = 4 py the diameter is x = 2 pm.)

Ilustration 1. For 7 16 +3é = 1 the length of a diameter is & = >

Find the length on the conjugate diameter b,.
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e

. golution. By theorem VII we have
312 + blE. =g 4 b= 25,
blz 25 - _2{)’_ = '71'5')
or b = V3.
liustration 2. In the hyperbola 4 x* — ¥* = 4 the slope of a di-
ameter is 1. Find the extremities of the conjugate diameter.

Solution. The slope ' of the conjugate diameter is given by
{theorem V)
mm' = b¥/at =4, N
Therefore wm =4 R\,

The equation of the conjugate diameter is
i y=4dzx "

? '..
L&

and this intersects the conjugate hyperhola -2+ ¥ = 4 in

; V3 143 ’\/g 14/0

the points (—3-» 3\/3) and (— 7 —ﬁ\/S:)‘-\\:
Ilustration 8. For the parabola 2 = 6aa diameter meets the

curve in the point for whichy = —2. Frind the slope of the chords

defining this diameter. N .
Solution. By theorem XI the diarhe ter has the equation y = 2 p/m

ory =3/m Buty=-2i8 also the equation of this diameter

and hence — 2 = 3/m oym = —%.

i*\
¢\ EXERCISES

1. In the conic 4 325 3* = 4 a diameter fisects the chords of slope 1,
Find its equation. ( 2, Ans. dx+y=0.

2. Tn the conioyls + % = 1 the slope of a diameter is 3. Find the angle

'?BtWeen thi ﬂiﬁ‘mcter and its conjugate. (Hini: Find the stope of the con-
Jugate diaméter and apply the formula for the tangent of the angle between

two lineB ) Ans. tang =—%.
”‘3\ ﬁor the hyperbola — 32* +23* = & the family of chords 4x — ¥ = k
es a diameter. Find its equation. Ans. 3x =8y =0.

4, Find the equation of the diameter of x* = 12y defined by the chords
perpendicular to2x — ¥ +5 =90 Ans. £ =— 3.



CHAPTER XIV
POLAR COORDINATES \

76. Definitions. Consider a horizontal line called.t@é]ﬁ\omr
axis and a point O on it called the pole, or origin. « Fhe polar
axis may be rotated about the pole through an angla ¢ so as to
make it pass through any point P in the plane'{’Call » = 0P
the distance, or radius vector. Then r and §%@re, by definition,
polar coordinates of the point P and we W{ite P(r, 8). Angular
measurements may be made in radiang,‘degrees, or other units.
The line through the pole perpendicu\l’a.r to the polar axis we
call the co-polar axis. O

i We make the following \fu?9
conventionsregardingsigns. 3%
The polar axis P'OP is pos-1®
itively directed to the right.
Thus for the angle 6= 0
the radius vector of'a point
to the right ofsthe pole is
positive. Adtet rotation of
P’OP throygh any angle 4, Fie. 118 .
7 is positiye in the direction OP and negative in the direction
OP’.%unterclock“dse rotations give positive angles, clock-
wiserotations negative angles.
.. The one-to-one correspondence between number pairs and
\fioints in the plane is not reciprocal as in the case of rectangular
coordinates. For, corresponding to a given point, there is ab
infinity of coordinates: (r, 8 + 2 kx) and (—7, 8 + (2 & + 1}%)
represent the same point for all integral values of k. There
,is no unique angle # for the pole, where r = 0.
By
" 77, Relation between Polar and Rectangular Coordinates
By superposition of the two systems we see that
124

. Polar
P! O\ (Pole) P A

p!
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[x = 7 COS 6,
@) Iy = 7 sin @,
r=Vat Y P(xy)
(2) 0 — tan-t ¥ ) P(r0)
L X
The angle ¢ is chosen as the Jeast f Y
(positive) angle corresponding o X >
to the quadrant in which the
point lies. Fic. 116 A
: y o)
: mna = ——» . N\
@ ) Ve Y
X A\
8 = —_— { &/
cos NS T+ 2 .\

By means of these relations a given equationcan be trans-
formed from one system of coordinates to ano her.

Ilustration 1. Transform the rectangulzir ’:equation a2 43 =gt
to polar coordinates. R\
Solution. From (1) we get o8
(r cos O)2 PN sin 0)* = @2,
:r’((Qs2 9 4 sinz §) = &%,
e r =ta.
The locus of r = ajs\a\ circle of radius ¢ with center at the pole;
7 = —a plots the'sdme locus (but beginning at a different point).
A/ .
Hlustration 2,\JFind the rectangular equation of the curve whose
o~ 4 _
polar&sgu?xtlon 87 =7 2008

Solgﬁé}n. From (2) and (3) we get

4

W Pt = ——
\‘ * 1 [
' + Vit 4 o7

vty +2x=4
w4y = -2
32—yt —162416 =0 (hyperbola).

78. Distance between Two Points in P?lar Coordigates.
“The law of cosines [see p. 8, § 4, (9), (b)] applied to the triangle
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in Fig. 117 yields immediately the square of the distance be-
tween two points Pi(ry, 61) and P.(r, 83).

42 = 7% 4 14 — 2 7.7 COS (32 - 81)‘

P, ('2 :92)
d
O\
Palr, 1) NN

Fie. 117 )
D
This is independent of the order in wh‘% the points are chosen
since cos (f; — 6.) = cos (¢, — 32)

79. Polar Equation of a. Stralght Line. The equation
Ax+ By 4+ C = Otransforrr}s into

Ar cog{‘”-i- Brsing + C =0,

£ 3
which is the genefal squation of a straight line in polar co-
ordinates. NoteMhat it is nof linear — 8 enters trigonometrt-
cally. Correspondence between rectangular and polar equa-

tions of cex;taln special cases is established in the following
table. . (See’§ 30.)

%
i Equation of a Straight Line
N R\ECTANGULAR COORDI ]
\/ NATES _ Porar COORDINATES
WVAx+By+C=10 General (A cos 6+ B sin §)+C=0
(2) x cos¢-ysing—p=0| Normal reoste — ¢} —p =0
(3) ¥ = mx Through origin # = tan~' m
Ay x ==k Perpendicular to | v = ksec#
polar axis
B)y==~ Parallel to polar | 7 = kescd
axis




POLAR EQUATION OF A CIRCLE 127

§80]

It is simple to derive any of these polar equations directly
from a figure. For example the polar normal form can be read
off instantly from Fig. 118. :

Fic. 118 AN

Tbe&ﬁstance formula in
eqiation of the circle with
Diregtly from Fig. 119 we have

80. Polar Equation of a Circle.
§ 78 enables us to write down the
center at (r1, 81) and radius a.

@& = r 4 o _,2.:1{1;1 cos (8 — #1).
N P(r0)

{ri,01)

Fic. 119

\Ti]e following special cases are of interest.
7 = @, Center at the pole, radis a;
r = 2qacos 8, Centerat (g0, radius 4;
r = 2asing, Centerat (g 90°), radius ¢.
81. Polar Equation of a Conic. Let the focus be at tl}e pole
and the directrix be perpendicular to the polar axis at a distance
b to the left of the pole. Then (Fig. 120}
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D o
r
O \8
——p F
p \:\’
=
Fi6. 120 A\
R
PF v
PD & WV
¥ O
— . L
prrcosd ¢ O

Solving this equation for r we gef: fﬁhé equation of the conic

- XY
(1) "=1 ¢coso N

Other forms of the go};ic with focus at the pole are

N\
(2 7 = Ttkifp—;ss’ directrix to the right of the pole;
3 - N ep directrix parallel to and below the
I esing  polar axis;
@ Q7 e ) directrix parallel to and above the
N 1+esing  polar axis.
A . 4
“\Milustration. Identify and sketchr = ——5————.
\/ . 1 — $cosé

Solution, Here ¢ = %, p = 12. The curve is an ellipse. THE
ends of the major axis are on the polar axis at the points (6,0
and (3,180°). Thecenterisat (3. 0°). The curve can be plotted
point by point in polar coordinates; or use may be made of the
information gained in the study of conics in rectangular €09
dinates. We know that a%? = g% — B2, whence & = 81 =&
B = 72, The rectangular equation is
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-8, P
81 72 )

b
© F C{5.0%
V’(3,180°)UV(6,0°) .
p \\ N
A\
Fie. 121 K N\
EXERCISES N
1. Find the distance between (1, 0°) and (1, 120°). \ ¥ Ans. V3.
2. Write the equation of the line perpendicular to thq\polar axis at a dis-
tance of 3 units to the left of the pole. WAV Ans. 1= 3sech,

3. (a) Find the polar equation of the circle’with center at (2, 30°) and
radius 2. (b) Transform this to rectangular coordinates.
Ans. (a) 7* — 47 cos(p — 30°) = Oyulb) (x —VER+ (p -1 =4

4, (a) Identify and sketch r = i—-_.—lsh’—l'é {b) Transform to rectangular
toordinates. ¢

AAns. (2) Parabola; (b) #* = 2(y + 1)-

/N

82. Several Equati é‘,} One Graph. A curve in po_lar
coordinates may have %re than one equation. A given point
(r,6) may have eithér of the two general coordinate repre-
sentations A

:t\"’
{1 £\ {r, 8 + 2 kx),
@AY (=ne+(2k+ D,
for anySinteger k. Hence a given curve 7 = f(6) may have
elth‘{fﬂf the two equational forms
( r = (6 + 2 k),
B) 7 = {0+ 2k + D).

Equation (A) reduces to r = f(8) for k = 0 but may lead to
an entirely different equation of the same curve for another
valve of £, Similarly (B) may yield still other equations of the
Curve,

Wustration 1. The polar equation of a straight line is unique.
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Solution. We use the general form
(L r{Acosf 4+ Bsing) + C = 0.

Since cos (f + 2 kx) = cos @ and sin (¢ + 2 kx) = sin 8, equation

(A) reduces to (1). Againcos(@ + (2% + 1)w) = — cosé and

sin {f + 2k + 1)r) = ~sin #; thus equation (B) reduces to (1},
There is, therefore, only one equation of a straight line.

Tustration 2. A conic has two equations in polar coordinates.

Solution. Cousider the form A o
1) gt R\,
1 —ecosh O

N/

Equation (A) leads to nothing new. But equatiorg}(l?;); becomes

e LY
@) =1 + ecosf Y
which is quite distinct from (1). Indeed; the coordinates of a
point which satisfy (1) will not satisf;{'(Z). The curves are the
same but they are traced 180° out of phase.
: i)

Tllustration 3. Find all equations of the curve r = cos 5

Solution. Using form (4): &\~

<

e 2 ey
PR
(1)
-
N @
\"
Y
Fic, 122
This reduces to
(L r=cosg, for k = 0;

(2) T = —Ccos g, for & = 1.

I\
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Using form (B):

. N EXCT 555}
This reduces to

) 7 = —sin g for k& = O;

@ r = smg, for b = 1.

Hence there are four distinct equations of this curve, which may

be traced by beginning (8 = 0) on any one of the four branches. A

as shown in Fig. 122. The starting branch is indicated byj;he
number corresponding to the associated equation. (Alsp -see
Tllustration 2, § 83.) N\

7

Tt is useful to know the various equations of'a’ cgrve when
plotting; it is necessary to consider forms (A and (B} of the
equatlons when determining the points of mt section of loci
in polar coordinates. O :

Q"

83. Curve Tracing in Polar Coordinates Essentially the
Same procedures are followed ing plotting a curve in polar as
in rectangular coordinates. Lntercepts extent, symmetry, and
asymptotes are investigated!

1. Iniercepts. For themintercepts on the polar axis, set
8 = kr and c{etermme\\ As many values of & (an integer)
should be used as produce different values of 7.

For the 1nte;;c'\e,pts on the co-polar axis, set § = 2 k; 1 vy
and determinie the different values of 7.

I Exténs’ Normally ¢ will be thought of as the independent
variable,\which therefore can range from —oo to +o0. The
deper;dent variable r will plot wherever its value is real and
finite! In many of the most important problems in polar
@ordinates 7 turns out to be a periodic function of 6, o?vmg
I general to the natural presence of trigonometric functions.

student should review his trigonometry at this time.

IIL. Symmetry. Let the several equations of the curve be

own and let fi(r, ) = 0, f;(r, 8) = O be generic notations

for any of them. Then the curve will be symmetric with
Tespect 10

Q.
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1. The polar axis if fi(r, &) = f(r, —8);
2. The co-polar axis if fi(r, §) = fi(—r, —8);
3. The pole if fi(r, 8) = fi{(—1, 8).

Converse statements also hold. The functions f; and f; may he
the same or different.

TV. Asympiotes. The determination of the asymptotes is
often difficult. On the other hand it is relatively simple to de
termine the divection of an asymptote: if ¥ =4 for 8 S\
then there is an asympiote which makes an angle #; with\the
polar axis. Further it may happen that alim r = k{in which

case we say that » = % is an asymptote or that 7¢Approaches }
asymptotically. Fortunately the question (‘e asymptotes
arises only infrequently in problems thatMare best suited i
treatment in polar coordinates. O

i
Iilustration 1. Sketch r = a(1 — cos 8, “

Solution. Think of # as being a poéit"lve number. The intercept
are (0, 0) and (2 ¢, 7). The largest value of r is 2 ¢ and the curw
is symmetric with respect 0, the polar
axis since cos # = cos (=0). Further,
gince cos @ is of period 2 7, the graph
will be periodic of{period (not exceed- (28,7)
ing) 27. Foun (B} of the equation is :

. O
(see §82) 7,="u(l + cos8), which re-
veals no othepsymmetry.
Of primg"’itﬁportance is the reasoning
exhihited’in the following table. Fic. 123
\:“\".
) ."s' QUADRANT | & | coseo | 7
A )
a\ ¥ 0 1 0
\ y 1 '.rr/ 2 G a
11 T -1 | 2«
111 iw 0 a
v 2 1 0
|

As 0 runs through the first quadrant, cos § decreases from 1 to!
and 7 increases from 0 to @, The other variations involved ¢
be seen at a glance, and only a few individual points will be need?
to plot the graph accurately. The figure is a cardicid.
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Hllustration 2. Sketch 7 = cos g (See Illustration 3, § 82.)
Solution. The first thing to note is that ¢ will have to run through

720° in order that cos g may run through a complete period.

B( 5+/2,90%

E(—1,360°) A(1,0% O

F(—2+/2,450°) .=';\\
Fic. 124 *)

The intercepts are  A(1,0% "("72, 90) E(-1, 360°),
F (— % 450")- and the poIe C(O 180°). The curve has the

g There is symmetry with

four equations 7 = + ﬁ’r-—!— n
q ] COSQ\ si 5

respect to \w
1 Th N . _ 9 — Q -
. e polar axis sigeg 7 = cosé = ¢os | — 3)

2. The co-polax 'wi$ since r = sin 9 and —r = sin (— g) are the

p 2
same; \\
3. The~ §ince 7 = cos g and —7 = cosg are both equations of
the'eurve.

The?bllewmg table and a few points will enable us to sketch the
gtaph.

QUADRANT P g v
FOR ¢ 2
0 0 1
I 00° | 45° 3’2_2
1I 180° ane 0
|
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We apply our knowledge of symmetry for the rest of the cuw

and remember that r is plotted against ¢, not g

1

Hlustration 3. Sketchr =1 — g

oBt. 125

Solution. Radian measuré 'must be used.

- =08 = =1——1 . therear
When ¢ O,r—'p.t\Whenﬂ—km-,f—l T3 5

therefore, infihitely many intercepts on the polar axis, Similar!
for the copolar axis. There is an infinity of equations of eat
type (A)and (B). There is no symmetry.

For ¢ >»,0.t is easy to see that 7 increases with § and thai;_lim 7 =]

Lo

Qlc\graph approaches the circle r = 1 asymptotically from t
Linside. :
~3For 9 < 0 the curve is discontinuous at § = —1. The cuvé.

() asymptotic to a line which makes an angle of —1 (radian) wit

the polar axis, This asymptote, found by the aid of the_calcum
is dotted in. Since limr = 1, the curve is asymptotic t¢

& —r—

circle r = 1 from the cutside.

The following typical graphs and their equations will s
as excellent exercises in curve tracing. The student sh
analyze each equation, using the graph shown as a check agam
his own work.
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(2,0}

Fic. 126. Circle:
7 =acost

(a,% )

FiG. 128. Four-Leayed Rose:

Fig. 130, Three-Leaved Rose:

™.,
. a
~
>
3 P
O
2]
/ .~
P ~,
rd
I
I
a

T = acQs2a
A/

r=gcos3a.

Fic. 127. Circle:
r =asing

Fic. 129. Four-Leaved Rose:

Fic. 131.

v =agsinZ A

Three-Leaved Rose:
=0 gin 34



136
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7 \\\
l\O \\.
3
1
|
|
I
£\
‘\n\“‘-
——— , ,\’:'\‘
Fic. 132. The Spiral of Archimedes: 'i\ v
To=gf. L
l‘n’s
D

Thel

‘:z“= atcos 2 4.

a<hb«<Za
b=a

b=<a

O

\T

F1G. 134. The Limacon of Pascal:
r=5—gc0sh.
{Cardivid if # = . See F1c. 123.)

[Ch. XIy
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{2,1)

(N
2/

{—a1)
FiG. 135. The Lituus:
7 = o, ¢\
7N\ ¢
EXERCISES A\

Trace the following curves. , ‘ g
1. The Hyperbolic Spiral: r = a/8. o
2 The Cruciform: r = 2@ csc2 2. ’ ’
3. The Conchoid: r = esec@ £ b :'\\:
4. The Strophoid: 7 = g(secd + tan é). '\
5. The Trisectrix: r = ¢{d cos @ — secd). :‘t' ’

84. Intersection of Curves in PolafiGoordinates. By a point
of intersection of two curves we méan a common geomelric point
regardless of the way in whichithe coordinates are assigned.
With the exception of the/fdle, coordinates of a point on 2
corve will satisfy some.eﬁhation of the curve. To find the
points common to two\eurves 7 = f(§) and 7 = g(6) we solve
simultaneously each(eguation of form (A) of one of them with
every equation of form (B) of the other. That is, we find the
solutions commtotr'to
(A) .§~\’ r = j(0 + 2 kn), _
| —r = g0+ @K + 1m),
for all'mtegers £ and % that yield different equations.
“Ihis process may or may not lead to duplications 1n the
answers. Often the work may be simplified or shortened by
the use of symmetry, when present, or of other information.
The pole is handled independently.

Huustration 1. Find the points of intersection of 7 = cosf and

*=sing. (Figs. 126 and 127.)
Solution. Each curve has only the one equation.

™
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cosfd = sind,

_
6=1

r = Vé-

T

Each curve passes through the pole. Therefore there are tw
points of intersection, (v2/2, w/4) and the pole.

IMustration 2. Find the points of intersection of 7 = cos# ahd

.A

r —cosg (Figs. 126 and 124.) !\
o i

Solution. The first curve has only the one equatmr). The secomd
curve has two equations of form (A), r = +cos<§» and “‘two of form
{B), r = xsin g (See Illustration 3, § 82 ’We may use exthef

form in solving with # == cos #. o

N\ Fic. 136
USlng\form (A) we get:
”'2\\ T = C0S g, 7 = co§ 9,8
NN 7 = cos g 7 =—00s 5
(\“’ P(1, 0°), Q(—L» 240°); P'(1, 360°), R(—% 120°).
Using form (B) we get:
¥ =cosd, 7 =cosé
¢ = g 8 = —sin -Q*
= 8N 5 Fo=—8lj
Q'3 60°), R'(% 300°), P"(—1, 180°); pr(—1, 180%

Therf: are four points of intersection: the pole and the points B, af
(with or without primes) regardless of what coordinates ar¢
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——m—

Note that either method is adequate but that there is duplication

in each.
EXERCISES
Find the points of intersection of
i, 7 =singr =1 —siné Ans. (3 30°), (3 120°), pole.

9. 7 =2sin6 7 =2cos28 Ans, (1, 7/6), (1, 57/6), (=2,37/2), pole.
3. m=16=1 .
Ans. ( 1 ‘ 1)- ( S— 1 1)
1 +2kn 14+@E4+ 1
86. Lociin Polar Coordinates. The basic principles involyédy
in loci problems are the same regardless of the coordifiate
system used. (See § 21.) We seek ihe locus of a pointiwhich
moves in accordance with certain prescribed geometyic condi-
tions. The equation is determined by expressing-thése condi-
tions analytically in terms of the coordinates () of the mov-
ing point. By careful selection of the polgtjséx“ls and pole the -
mtermediate work can often be reduced and the final equation
simplified. e \4
ustration 1. Find the locus of P.hith moves so that its radius
vector is proportional to the sqijz?.’zte’of its vectorial angle.

Solution. The answer is im;neaiate: the locus (a spiral) is given by

Qv = ue

» for all integral values of &.

where k is the fac 1'\53f proportionality.

IMustration 2.  Find the locus of the midpoints of chords of a circle
of radius ¢ drawyn from a fixed point O on the circle.

Fic. 137



140 POLAR COORDINATES [Ch, Xty |

Solution. Let the polar axis coincide with a diameter through o
and choose O as the pele. The midpoint of a general chord g
we label P(r, 8) and draw PC where C is the center of the circle,
The coordinates of C are (g, 0°) and OPC is a right triangle,

Thus

r=qcosf
is the equation of the locus, a circle with center at (g 0") and
radius a/2.

Hlustration 3. Consider a circle of radius # and a diameter(0O4:
A line 0@ is drawn intersecting the circle at €. Let P be-a'peifit
on the line 0Q such that OP = 0@ + 2 a. Find the .lpc‘us of P.

S

Fie. 138

\X

Solutio:g..\";jiét the polar axis coincide with the diameter 0A and
tht;‘{{).le with the point 0. Directly from the figure we have

N OF = 0Q 4+ 2 q,
O r=2acoshd +2aq,
\ ) r =2 a(l 4 cos i), a cardioid.

Mustration 4. Consider a circle of radius 2 @, a diameter OCA, and
a line L perpendicular to 04 erected at a peint halfway between
0 and €. A variable line OBD intersects L at B and the circle
at D. Find the locus of P on OBD such that OP = BD.

Solution. The equation of L will be 7 = g sec & if the polar axis &
taken coincident with OCA and the pole with 0. The equation
of the circle s ¥ = 44cos8. The coordinates of P, B,and D
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oA

L
D
BiEg)
| B
| \
o C(25,0% A N
R¥4
| —
'i PN
S\

FIG. 139 o8+

are P(r,8), Blasec,f), and D4 acosd,6). The condition
OP = BD becomes N

r = 4&tosd — asech,
7 ='\%z(4 cos § — sec 8),

which is the equatien of the trisectriz. (See Exercise b, §83.)

| A\

| o EXERCISES

1 Threu ti;e focus F of a conic, focal radii FP* are drawn, P/ heing on

- the conic. &he point P is taken on FP' so that FP is proportional to FP”.
Show thafithe locus of P is a conic with the same focus and eccentricity.-

A ANariable line OA through the pole cuts the circle ¥ = @ cosé at B

atd the straight line 7 = a sec @ at C. Find the locus of P if P is on OA and

10P = RC. Ans. The cissoid, r = a(secé — cos ).

3. A variable line I through the pole cuts the fixed line v = asecd at A.
‘ Along I ang from A in either direction the distance AP =  is laid off. Find
the locus of P,

Ans. The conchoid, r = asece * b. (See Exercise 3, § 85

4. A variable line I through the pole cuts the fixed line r = @secé at A

<t the projection of 4 on the polar axis be B. Along L and from A in either
direction the distance AP — AB is lnid off. Find the locts of P )

Ans. The strophoid, 7 = a(sec 8 & tan6). (See Exercise 4, §83.)



CHAPTER XV
HIGHER PLANE CURVES

86. Definitions. An aigebraic curve is one whose equation
is of the form
f(,3) =0 O\

where f is a polynomial in x and y. All other plane ditves are
called lranscendental curves; included among themr are the
graphs of the trigonometric, logarithmic, ad@"exponential
functions. AN

The straight line and the conic sections.are algebraic curves.
The algebraic curves of degree greater th}m two and the tran-
scendental curves are referred to as fuyz’ér Plane curves.

87. Algebraic Curves. We have’already treated a number
of higher plane curves in our stiidly of polar coordinates. The
ones studied were especially,z{riienable to such treatment. We
now consider several in rectahgular coordinates.

THustration 1. A tangent is drawn at one end of a diameter of 2
circle of radiug @A variable line through the other end of the
diameter cuias\sﬁe circle at A and the tangent at B. A line
through A parallel to the tangent and a line through B parallel
the diar:neﬁef meet in the point P.  Find the locus of P.

"\";.\ oo Y
AV D B
N
{ \' 2a—y \\
&\ ¥ hY
\ ) \\\
\\ci _____ TN P(x,y)
A \
Y
—_—X
Q
FiG. 140

142
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Solution. We choose axes as m Fig. 140. Now
{1 _ OC:CA = 0D: DB.

Further CA =v'y(2 a — ¥) since it is the mean proportional
between v and 2 ¢ — 3. Thus (1) becomes
y:vy2a—y)=2a:zx.
This reduces to
2y =4 aZa— ¥,

The curve (a cubic) is known as the Witch of Agnesi.

| Ilustration 2. A wvariable line L th.rough the origin cuts the ﬁx&i\

linex = gat A. Along L and from 4 in either direction th¢ §}s
tance b is laid off, the end points being P and P’. Find ,t.he locus
of P and F.
Y \,.,\"

|
Fic. 141

Solution, In Fig. 141 we have
AB _y,
¢ X

N
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PQ=y -2 =7 —a)

2
{x — a)p +% (x —ay = b,

This reduces to
(2 + ) (x — a)? = a%2
The curve (a quartic) is called the Conchoid of Nicomedes., (See
Exercise 3, § 85.)

Illgstration 3. Find the locus of a point which moves so that they
product of its distances from two fixed points is a constant.
y AN
N\

87 Fie 142

Solution, Le\t;the two fixed points be (—a, 0) and (g, 0} and ket
the constant be ¢%. Then the locus is

Y VET Ve -0+ P
wihic wmay be reduced to the form
'.,\’.“:. (2 + 3 + @) — 4 g2 = ¢,
M\‘; “The curve (a quartic) is called the Ovals of Cassini. (It reduces

to the Lemniscate of Bernoulli for ¢ = a. See Fig. 133 and
Exercise 7 below.)

2,

*

The first pedal curve of a given curve with respect to a give?
point is the locus of the foot of the normal from the point upon?
variable tangent to the curve. Pedal curves of the conics 2%
interesting higher plane curves,

i
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—

Tlustration 4. The first pedal curve of a parabola with respect to
the point of intersection of the axis and the directrix is a strophoid.

Y

Fio, 143 8%

R

_}
e

Solution, Let the parabola haveithe equation
yt =Edoax,

+{)
The equation of the dﬁg\t‘rfx is x = . A tangent of slope m has
the equation (see §44)

{1 Y y=mx—£
N m

and tha‘{(mhal to this through (4, 0) is

N 1
(2)§~>~: y=—1 (x — a).

“We seek the locus of the point of intersection of (1) and @). If
We eliminate s between the itwo equations we shall‘ha\‘re tl}e
equation of the locus. Solving (2) for m and substituting in
(1) we get

yz_(x—a)x+ ay

) y & —a)
which reduces to

2 x{at + 38 = 2 a(y? -+ 2.
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EXERCISES |
Transform the lollowing polar equations to rectangular coordinates.
1. The Cruciform: r =2@acsc 20, Ans. x%? = a2 + ).
2. The Trisectrix: r = &(4 cos & — sec ). Ans. 3 = xg(i i-__r 1}
3. The Cissoid: 7 = afsecd — cosd). Ans. ¥ = ax_sx.

4. The Cardicid: * = a(l + cosd). Ans. {x® 4+ 3 — ax)? = a®(x* + 1Y

Prove that the {irst pedal curve of ¢\
5. A circle with respect to & point on the circumference is a caljdioi\d;

6. The parabola ¥ = —4 gx with respect fo the vertex Gs“the cissoid
£ ’

2 = . €%
=t .“’>
7. The hyperbola x? — 3 = a? with respect to its‘egnter is the lemniscate
(x2 + 37 = a(x® — ¥%). N

R

88. Trigonometric Curves. Thorongh familiarity with the
details of the graphs of the trigonemetric functions is highly
desirable. Problems involving\them occur again and again
in all branches of both pure ahd applied mathematics as well a
in physics, chemistry, and éngineering. ‘The student should
make use of Table 3, §4>and Table 1, Appendix B, and dra¥
for himself these %@pﬁs, checking his own with those that
follow. \

\<& LY
Y ¢ t\ .. ———— (___ P
7\ /
oA | ’
o I e’ N
MY 7l | T -~
AR Al ] 7
SN ) 1\"‘-. ¢’ | |
) N % —_— N
l ! « \
O T 27 A
] ] el
S— el |
!I ’I‘ ~ I ""\\—1 1
do ‘
! :E Hy et T

FiG, 144, y = gin x === Fic. 146. y = sin™ x ——="
FIG. 145, y = ¢80 4 ~==m FiG. 147, y =csc iy —==~"
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[ I
[
Ot [ -1 1
| \\ | l LY N
! pJ ¢\
! : "i : - A ’\\ -
" 1 \ i - . \J
FiG. 148, ¥ = €08 & = Fig. 150. y = ms—1 x —-,--’-
Fig. 149. y=secx---——- FiG. 151, y =sec™' x 73
AY «\

Fic, 152. y = tan, k;—»— Fic. 154. y = tan? x ——
Fic. 153. v = eo’t«f: ————— FiG. 155 ¥ = cot™ gz ==r==
y gR{s »

Fic. 156. Sine Wave: y = Asin {(br + ¢)-
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Ilustration 1. Show that y = ¢ sin
bx + ¢ cos bx 1s a sine wave ol the
formy = Asin (bx + ¢).

Selution.

asinbx + ¢cos bx

Ve + B

¥

i

( a - sin bx + —f cos bx)
Va4 b v+ ¥

. P : ~\
Now the coefficients of sin bx and cos bx are such that thesﬁfh'of

their squares equals unity. Hence they may be though.t\af as the
gine and cosine of some angle, say ¢, as in Fig. 15?.“’{1‘ herefore

=@ + b (cos ¢ sin bx + sin ¢ cog‘ﬁ)s)
= Asin (bx + ¢),
A\

which is the desired form. _ )

4
W

We may restate the result by saying\that the sum of a sine was
and a cosine wave of like pen'od z's~a Sthe wave.

Amphtude =4,
Y 2 v
perl@d 5
_ b ,
Y phase angle = ¢,
, d phase shift = - E)f

AN
)
/

Hlustrajién’.\é. Sketch y = sin ¥ + 4 sin 3 x.

’\\w

Y ) y=zsin x—l—%sin 3x
N g
N y=sin x
1 \
S\
=3
\3
1
3 -r-‘-\ ———
\\ //
fJ
~ ry
~ ‘-...//
yz—é-sin 3x

Fic. 1568
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Solution. We employ a standard and most useful method known
as the composition of ordinafes. First plot ¥ =sinx and v =
lgin 3 x separately. We wish the sym of these two curves and
it is a simple matter to take dividers and add thc ordinates
graphically for any given abscissa.

EXERCISES

1, Show that y = a sin bx -+ ¢ cos bx may be represented as a cosine wave
of the form y = A cos{bx — w).

2, On the same sct of axes and to the same scales plot (a) ¥ = cos x/E*‘:\

)y =3cosZx, {c) ¥ = cosx/2 —3cos2 2N\

3. Sketch y = tan {x — = /4). AN

89. Logarithmic and Exponential Curves. From(tﬁé defini-
tion of logarithm [see (4), § 2] \/

) y = log. x 7\
and }
2) X =a¥ >

are identical statements of the rqlaﬂ'on that exists between x
and y. Equation (1) expresses $explicitly as a function of %
while (2) expresses x as a furckion of y. For a given base 4
the graphs of (1) and (2) afé.therefore identical.

The two principal bases.in use are ¢ = 10, which gives rise {o
common logarithms, a%%‘ g = 2.718, which gives rise to the
natwal or Naperign’ logarithms. The number 2,718 is an

approximation fordim (1 + 1/x)» and is generally designated
by the lett :“e{"\Bgse 10 is most useful in computational work,
base ¢ = 2748 ... in theoretical. .
In Appendix B, Tables I1, II1, and V are devoted to loga-
rihn$and exponentials. By means of these tables the details
o plotting logarithmic and exponential functions may be
facllitateq,

llustration 1. Sketch y = loguw 5.

Solution. From Table 1T we compute a few points: (3, —.3010),

(1,0), (2, .3010), (5, .6990). The logarithms of numbers between

0 and 1 are negative, and x =0 is a vertical asymptote

(log0 = —c0). There are no real logarithms of negative num-

Q"
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1 (5, .6990)

1,0
(1,0} %

1 2 3 4 5
—.3010)

N

Fic. 159 RS,
N
bers. As x —--00, log x —+co, Fig. 159 is also the graph o
x = 10v, N
Tustration 2, Sketch (a) 3 = 107, (b) ¥ = e, M'\'\'”
$ )

Solution. (a) This graph will quite evidenty.b&’the same as that
of x = 107 with the appropriate_changes.il&lhe axes.

Y N x
w=10
W JiEaa817)
N} y=e*
A
\'\" (1,2.7183)
P,
N (%, 1.6487)
i“\.‘.
O (0,1)
E"\’:;' (_IJ 3-6788)
N/
- -1 1 X

Fic. 160

(b) From Table V we compute the coordinates of the followi¥
points on y = e=: (—2,.13534), (—1, .36788), (0, 1), (3 1.6487>
(1,2.7183), (3 4.4817). The graph has essentially the sai®
character as that of v = 10=.
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e

Tustration 3. Sketch ¥ = e~*sin x,

golution. The graph may be thought of as the product of the two
graphs ¥ = e and y = sinx. Thus, for any abscissa, we com-

Fic. 161 ’~,‘: ™y
pute ¢~ and sin x and multiply these together to ggb:ph?e' ordinate
of y =e=sinx. The curve is known as the vexponentially

damped sine wave. \\,

Ilustration 4. Sketchy = e S\
Solution. The curve crosses the y-axig aj;;(ﬁ, 1); there is no inter-
cept on the x-axis, which is an aggmptotc. There is symmetry
with respect to the y-axis. By eemputing a few values (Table V

2

(©,1)

A\ Fic. 162

maybe used) an accurate graph can be constructed. T he grgip‘h is
kiiown as the probability curve and is of great use statistical

theory.
\ EXERCISES

Sketch the following curves.
Ly ~log (x + 2).
Ly=lgve -9

8y =— 44,

Loy =g,

e X
b.y= 5 (e“ + e “), the catenary.



CHAPTER XVI
PARAMETRIC EQUATIONS

90, Parametric Equations. It is often advantageou$ }b\use
two equations to represent a curve instead of one. \ Yhe x-co-
ordinate of a point on the curve will be given by*on‘e equation
expressing x as some function of a parameler, §§§(~49, or £, and the
y-coordinate will be given by another equaiion expressing §
as a function of the parameter. Suchsgquations are called
parametric equations. Upon elimin inb the parameter be-
tween the two equations, the Carteaan equation of the curve
is obtained. Many loci problems are treated most readly
by means of parametric equatlons Since a parameter may
be chosen in many ways, the ‘parametric equations of a given
curve are not unique; in some cases they will represent onlya

portion of a curve. \
Hlustration 1, V{Nte the equation of a straight line in parametric
form,

Solution. Gons:der the equation of the line in the two-point fort

“\:\ ¥Y—¥%» _ Xx—x

‘.x" 4 Y — M - Xa — X3
wahd set each of these ratios equal to the parameter . Solving for
(" »and y we get as parametric equations of the straight line
vV x o= x4 (X, — 1),
Y=+ iy — ).

Tltustration 2. From Fig. 163 find the parametric equations of the
ellipse *x? 4 @®? = g% in terms of the angle &.

Solution. It is immediately evident that

X = acosé,
¥ =bsin®,
152
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Y

Fic. 188\

which are the equations s.oug‘l’rlsw if ¢ = b we have
a\& a cos B,
\ y = asind
as parametric equatlons of the circle a2 + 37 = &

Hlustration 3. P\md the curve traced by a point on the circumfer-
ence of a czﬂsle 0[ radius ¢ as it rolls along a line.

SD]“hOHv\LEt the x-axis be the line and let the initial position of
the, ttacing point P coincide with the origin. We take as param-
#r (Fig, 164) the angle PCN = # (in radians) through which

\"\thé radius PC turns as the wheel rolls into a typical position. We
seek the locus of . Now

ON = arc PN = af.

Hence
x = ON — BN
= ON — PM
Purther = g — asind.

y=PB=CN—-CM
=g — acosf.
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The parametric equatmns of the locus of P are therefore ¢\ \
= q(f —sin#), \ O
y = g{l — cos . RO

Solving the second of these for 8, as a function of ¥, and substituting
in the first equation, we eliminate the pardnieter and obtain

x=a (cos—‘ Ea— —m)

as the Cartesian equation of the locus called the eycloid.

The cycloid is an important curve™in physics, where it is called
the brachisiochrone. Turned upside down, it is the curve of
steepest descent: a particle swill slide down it in minimuni time,
the same regardless of* the particular point on the curve from
which the part:lcle 1s Feleased.

INustration 4. %\ﬁl{:le of radius b rolls on the inside of a circle o
Firu

radius a.

e locus of a point P on the circumference of the

rolling circler

Solutio
through

C0n51der Fig. 165 where the parameter is 6, the angle
which the radius vector to the center C of the rollitt

Qde has turned. First note that ¢ and ¢, the angle through
\which the radius of the rolling wheel has turned, are connecte
by the relation

or

Further

arc NA = arc NP,
af = bo,

¢ =8

@

b

a=80"4+0—4¢
=90°+o—%3

4
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_ .,_awb)
=90 (b 8,

- Z —
and _ sma=coes—b

* hi

6.

O
. Fic. 165
N\

The coordinates of Pare x and y.

%208 - 0D + DB
/7= (ON — CN)cosf + bsina,

O a—2b
1) \\a x = (@ — b)cost + beos——F.
Similatly -
o y = BP = DC — MC,
@ . a—2b
2 y=(a~b)sing - bsin T4,

The curve is called the hypocyeloid. If a is an integral maltiple of
b the tracing point will return to its original position at A after
the rolling circle makes one trip around the fixed circle. If gand
b are commensurable the tracing point will ultimately' return.
But if ¢ and b are incommensurable the tracing point will never
Teturn to its original position.
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If @ = 4 b the curve is the astroid ¥
or hypocycloid of four cusps (Fig. T
166). Itisleftasan exercise for
the student to show that the
parametric equations n this case
reduce 1o

x

¥

whence the Cartesian equation is
it + vt =ah

By simply changing —b to +5 the

case where the rolling circle rolls on the outside isgb;fxtained and
the equations are A °

acos* 8,
asin? b,

FIc. 166 ¢\

'.‘\‘n
x =(a-+bcosf — bcos “—i_—"jﬁ\
. . ¥
y=(a+b)snd — bsxr;a.—fr\k' g
Y ‘”x\ W

"\
/ FiG. 167
The curve is the epicyeloid (Fig. 167). All the cycloids are used I
the design of gear teeth.
Tllustration 5. Sketch the curve whose parametric equations ¢
. _Sa |
1+
3 ai?

YTa+s
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Solution. A table of values of x and ¥, for values of £, is con-

structed.
1o P12 4w -3 -1 -2
% 0 |44/3;3a/2) 24/3 0 —12ag/7| L w0 6a/7
) 5 1 o 23 3a/24e/3] 0 6a/T| +w | —124/7

The curve, called the Foltum of Descarles, is shown In Fig. 16&:\'
along with the range of values of the parameter 7 associated with *
each portion of the graph. Thelinex 4+ y + @ = Oisan 91311“{1111&
asymptote. PR N

N ’ FiG. 168
O\
By.e@;ﬁi'hating the parameter we obtain
/N p “':
VV P ¥ -3axy=0

as the Cartesian equation. The folium is an algebraic curve of
the third degree. The original parametric equations can be re-
covered by setting y = #x and solving this simultaneously w1t_h
the Cartesian equation for x and y as functions of #. From this
it follows that the geometric significance of this particular
Darameter is the slope of the line joining the origin and o Pomt ot
the curre, Of course if y is chosen as some other function of x
and { the parametric equations will be different.

N
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EXERCISES

1. In Fig. 140 take angle DOB = @ as parameter and show that the pan.
tnetric equations of the witch are x =2 g tané, y = 2 g cos? g,

2. If a string, wound around a circle, is unwound, a point on the striy
will trace a curve called the gnvolute of the circle, Show that the parametn:
equations of the involute of the circle whose polar equation is7 = aarex =
@cos@+ gbsing, y = asing — af cos 4.

3. A proiectile is fired from the origin with an initia} velocity of o i
direction making an angle o with the z-axis. Assuming that the initial‘ig®
pulse and gravity are the only forces operating, find the parametric’eqﬁatiors

of the path, using time { {in seconds) as parameter. £\
Ans, x = ol cOS @, ¥ =tel §in e — gé . Eliminate ¢ angl.‘é}r‘w\“'.f' that the
' e ’

path is the parabola ¥ = x tana — 3 1 sgtie\:."

4. Generalize the cycloid (Fig, 164) by letting P\be on a radius CP of the
rolling circle at a distance R from the center C,\ Show that the parametrit
equations of the curve traced by P (general I }. a trockoid; curiale cychil
if PC < a, prolate cycloid if PC > a) are x\&'¢# — Rsing, y = ¢ — Roost.

N
)
s W




CHAPTER XVII

EMPIRICAL EQUATIONS

91, Curve Fitting. So far we have been concerned with
graphs of functions which were exactly expressible in some

analytic form. Flowever, much of the work in the sciencés )
relates to data that are functionally related by no known egact "

formula. In some cases theoretical considerations dictate: the
form of the function, in others the data themselves/siggest a
possible relation; but in many cases there is neshint as to
what the relation might be. !

In any event it is desirable to know the form of the exact
functional relation, if one exists, or some dpproximation which
will adequately describe the relation {or matters of interpola-
tion, extrapolation, etc. The process of finding the equation
of 2 curve which passes through of near the points of a set of
paired observations is called cutee fitling, and the equation of
the curve thus fitted is called an empirical equation.

In curve fitting we seek. fhe simplest curve which will reason-
ably explain the datas ’\Wé treat four types: lmear, parabolic,
exponential, and powea}.\

92. The LinegrLaw. Let the observed data be

I

N = Xa X3 - Xn

R\ il » ¥ - Yn

thQ.nr\'l)lcntted on rectangular coordinate paper these points
ihay appear to lie almost on a straight line. A line could be
drawn, by sight, that might suffice for rough work, but tk'aere
are two standard methods of fitting a line to these observations
which eliminate the guesswork. These are I, the method of
terages and I1, the method of least squares. o

I The Method of Averages. This process involves dividing
the given data into two sets equal or nearly equal in numbers

159

Q.
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—_—

of observations, computing the average point for each set, and
finding the equation of the line passing through these tw
average points. If the «’s in the first set run from x, to g
the average x for that set is
- X1t x4 e 4 x5
X1 = T .

J
The average points are therefore given by (%1, 31) and (%, ygl
where

T, = X —I_ Xt +‘ v + xn, ;:\
. "= ¢ o
and similarly for the ¥'s. W
l ot ‘
Illustration 1. By the method of averages fit a stra;ght litie to the
following data. ¢ \

\ A

. 1
s | 1| 315 | a0 1
| 2] 4 seNT | 10

7 W

10 N\
S
7 \~./’
2 \\
B4\
P 2.2
::\"'4 {Maan paint of all data)
.“\‘0
\.J 2
& 7
N 2 4 & & 19 X
~\./
3
\o

FiG. 169

Solution. The plotted points show a linear trend. We put thi
first three pairs in the first set and obtain as the average P‘Jm 0
this set

1+3+45

3

.'»?1‘:

=3’
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j = 2EEEE g

Similarly the average point of the second set is

%y = 7 —;10 - 12'[,
_7410 17
Va 2 )

The equation of the fitted line passing through (3, 4) and (&% 45 O
is9x — 11y + 17 = 0. A

If we put only the first two pairs in the first set and the last th et
pairs in the second set the equation of the line wogl&.%e
7% — 8% 4 10 = 0. With diffcrent groupings of the data this
method therefore yields different results. \:

A point on the fitted line yr — a + bx is calléddn estimated
or theorelical poini. The subscript T is usedion y to indicate
this. An observed value of y (from the datd) is often written
%. For a given abscissa the differenceNE’= ¥, — yr is called
the residual or error. Even though the line fitted by the method
of averages depends upon the greyping, the method yields a
line for which the sum of the exrers is zero and each such line
Passes through the mean point of all the data. It is customary
in mathematical writing l;ojindicate “the sum of”’ by the Greek .
capital . Thus “thefsum of the errors is zero” is writien
2E = 0. We note jthat the condition ZE = 0 is not a good
riterion for the ggodness of fit. )

. The Mgihod of Least Squares. A better criterion for
koodness of fitindeed the bes! in a certain probability sense, 18
that the s@b'bf squares of the errors shall be a minimum; hence
the name™“least squares.” This method leads to a unique
lie gentrally called the line of regression (of y on ). The
@efficients ¢ and b in the equation of the regression line must
satisfy the system of normal equations

(1) an + bZx = Zv,
2) asx 4+ bZxt = Zxy.

To solve these simultaneously for ¢ and b, thus obtaming the
lne of best fit y = ¢ + b, we first prepare the following table.
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X1 n X2 X1
X2 »e xs? Xo
Xn }’ (S x ﬂz NN
Zx v Zx? Zxy

Illustration 2. By least squares fit a trend line to the data

Tilustration 1. \ \)
Solution. (”,&’ .
x ¥ %2 ;y}\
1 2 1 x
3 4 9 D) 12
5 6 25 457 30
7 7 49N 49
10 10 100V 100
Zx =26 | Zy = 20 | Zpd T184 ) Zay = 193 J

ay

The normal equations are_y§ ™
Bw+ 26b =29,
(260 + 184 b = 193

These yield a=318/244, 5=211/244, and the line y=318/244%
211 x/244.or. 2A1x—244y + 318 = 0.

A
93, The Parabolic Law. The observed data might quite
ObViOb%ﬁ)'be non-linear, in which case it would be undesirabé
to fif{astraight line. In some instances a parabola of the fort
,}’.\"%"’G -+ bx + ¢x? is used. The method of averages woul
~apply but the data would have to be divided into three s
Vas there are now three coefficients, a, b, and ¢, to be determined
However, we shall illustrate with the generally alppliczible
method of least squares since it gives better results.
work is longer; there are three normal equations in this c2%
namely
an + bZx + ¢Zxt = Iy,
azx + b=xt + ¢Tx® = iy,
aZx? 4 bZx® 4 ¢zt = Ta%.
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Pt

Tiustration. By lcast squares fit a parabola to the data

¥ 1 2 2.5 3 3

Solution. We prepare the table

' !

; r ., Y a2 %8 xt Xy &ty
o b 0 a 0 0 o

1 ‘ 2 1 1 i 2 2 a

2 | 25 4 8 16 5 10 &

3 ¢ 3 9 27 81 9 270

1 | _3 R 256 12| 48

zr=10 ‘ Sy—115  ==30 | 2w =100 | Zr* =354 | Txy =28 | Swiy =87
{ "‘:\\'
Y \/

l -1 [a} &\i' 2 a )
o P
The normal E,@éations are
7\
()" 544106+ 30c =115
&

\ 5a -4 155 + 50 ¢ = 14 (reduced),.
A\ 30g + 1005 + 354 ¢ = 87.

7'\ .
Aiese yield @ — 7.1/7, b = 7.5/7, ¢ =—1/7; and the parabolic
\ equation is

7y =714+ 751 — 2%

%4 The Exponential Law. Any quantity that increases at a
Bven time x at a rate proportional to the amount present at
that time is said to increase exponentially, and the amount ¥
Present at any time x is given by
@ y = ae’”
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where @ and & are constants. If b is negative the quantity
is decreasing.

Money continuously compounded follows this law, and it i
otherwise important in biology, chemistry, etc., where the
quantity referred to might be certain organisms or certan
chemicals. Taking logarithms to base ¢ on both sides of (1) we
get

(2) log ¥ = log a + bx,

which shows that if the exponential law obtains then the pOints
(x, log ¥} fail on a straight line since (2) is a linear equahon
in x and log y. The results are similar regardless of the base of
logarlthms used. A

It is easy to test whether given data foIlow (nearly) an
exponential law and two courses are open} (a) to compute
log y for each y entry and plot (x, log ¥),on)rectangular coordi-
nate paper, or (b} to plot (x, ¥) on &émi-logarithmic papet.
In either case the graph will be (neakly) a straight line. The
latter course is the simpler since, with semi-logarithmic paper
available, no further computatmns are necessary.

Semi-logarithmic graph paper has the usual linear scale one
way, where the mark x nieans x wnifs from the origin, but 2
logarithmic scale the othér way, where the mark y is placed
at a distance log xxi:;}s from the origin. A sample of semi-
logarithmic paper s'shown in Fig. 171. Since log 1 = 0, the
origin is marked(mity; there is no zero on a logarithmic scale

If we set, I%2), log y = Y and log ¢ = A, we get

&) O Y = A+ ba.
F1tt1ng§1 straight line (3) to given data will readily yield the

expenential law 3 = ge*=. If it is more convenient to use
Jogarlthms to the base 10 we write

Y =logwy =logwa + bxlog e

= A" + 43429 bx
or

(4) V=A"4 ¥x
and proceed with this equation.

Mustration. Fit a curve of the exponential type y = ae to the
data
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x 12| 3 | 4

¥y | 8 5 3 p

Solution. We use (3) and logarithms to the base ¢ (Table III, Ap-
pendix B) to prepare the following table.

x ¥ Y =logy x xY “/.\
1 8 2.0794 1 2.0794 A
2 5 1.6094 4 3.2188 N,
3 3 1.0986 9 3.2658 O
4 2 0.6932 16 2.7728 \ .
Tr = 10 TY = 54806 | Zx* = 30 | =xY¥ = 1136684 )

9.
(
B kbl
-
b
tw
-

Fic. 171
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The normal equations are

24+ 50 = 27403 (reduccd),
54 4+ 158 = 5.6834 (reduced),

vielding A = 2.5378, b = —0.4669. Equation (3) becomes
Y = 2.5378 — (.4669 x.

Since 4 = log @ = 2.5378, ¢ = 12.62 (from a larger table of naturd
logarithms). :
Hence the fitted exponential curve has the equation

¥y = 12 62 E—O 4569:

N
o
O

95, The Power Law. Data might follow the power law

y = kx». Taking logarithms on both sides we get
logy = log k& + = log x, “\

or \

) Y= K+nX

showing that the data would plot atraight line on logarithmit
paper where both x and y are loganthmlc scales. The pro-
cedure is essentially the same as i the illustration of § 94.

Illustration. Fit a curve of the form y = kx- to the data

x 8 7 | 20 |

L i

50
\{\’ 2 3 5 ' 8

,Wié’{llustrate by using logarithms to the base 10 and

Solution, N
prepagéthe table:
.“\‘.
x “_} X = loguwx Y = loguy X
3l 2 04771 0.3010 2276
3 0.8451 0.4771 7142

"‘} 201 5 1.3010 0.6990 1.6926

53 | & 1.69%0 (.9031 2.8567

X =43222 | ¥ = 2.3802 | =X = 5.4911
The normal equations are
4 K + 43222 n = 2.3802,

43222 K + 54911 n = 2.8896,

whose solution is

K = 1788, n = .3871,
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Y

100 *
50

20

N

10

o

8

7

[}

g

4

k1

2

1 4 —

1 z 3 4 6678910 20 xu:doo 100
«N .
Fic. 172“:.‘*«
Now N ““
K = log k = 1768,
L =150z
The fitted curve, thé\é{\'e, has the equation
“3\} y = 1.502 2097,
\'\v/
x\“' EXERCISES

(Use methe ’least squares in each case.)
L Fit asﬁmght line to the data
i”\

<P

2. Fit a parabola to the data

-2 -1 0 1

¥ -2 -1 2 1

|
I
i

x 0 1 2 3

¥ 3 1 1 2

| Ans. 20y=59—51x+15x’.
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3. The data in the table represent the number N of bacteria in a cultue
at the end of ¢ hours. |

NH 10 | 20 | 35 | 65

:]!].1 2 3 4

Plot on rectangular and semi-logarithmic paper and f{it a curve of the tye

N =ge®, Ans. N = 555 gy
4. In the following table T is the period in years and R the mean d@tzm

of a planet from the sun, that of the earth being unity. ¢ \ ) N
Mercury Venus Earth Mars Jupiter Saturn Uranus Ne[)tl.}le Pluis

R 0387 (723 1 1524 5203 5539 19 101 80071 35
T 024 0.61 1 188 118 2945 8405l \164'79 243

Fit a curve of the type T = kR" and show that vg&}( rly T = R%,

“
\.,
.’s}
AN
4
A\
3 p
s W
o
\
N\
y
RN
N
.“\
NS
©
A\
A0
» N\ ¥
Z' )
X:\”’
O



SOLID ANALYTIC GEOMETRY

CHAPTER XVIII
FUNDAMENTAL CONCEPTS

96. Coordinate Systems. Three standard methods are uséd)

o locate points in three dimensions: I, Reclangulor Codrdi-
rates; 11, Cylindrical Coordinates;, and III, Spkerica}ﬁooréiz’-
ngles. AN\
1. Rectangular Coordinates. The point P(x, 3)\a)Ms located
by its distances x, v, and z from three mutualljzperpendicular
wordingte planes, the yz-, xz-, and xy-planes respectively.
The lines of intersection of these planes are.called the coordinale
ares. In Fig. 173 the xz-plane coincides with the plane of the
Z N

a3

3

m‘\ up(x:)';z)

Fic. 173

Paper and the same distance is used for the unit on the x- an;l

“Ues. A lesser distance is used for the unit on the y-axis

Wee there is foreshortening. However, the axes may be drawn

" labeled in whatever way seems most desirable for a par-
169

N

\

)¢
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ticular problem. The axes in Fig. 173 form a left-hande
system; if the x- and y-axes are interchanged a right-hande
system is obtained. For special reasons a right-handed sy
tem is generally used with problems in vector mechanics. I
rectangular coordinates in space there is a one-to-one core
spondence between points and number {riplets.

z

I1. Cylindrical Ca@tffnaies. The position of a po
P(r,6,2) can be deseribed by its polar coordinates, 7 and!
in the xy-planejand the rectanguiar coordinate z. (Fig. 17
The cylindricdh coordinates of a point in space are not uni

¢ } J A
x:\u'
O\Y

e

; P{od,q)

’~.\\
:..\s;

O
) 2

\

Fi, 175
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‘put despite this drawback the system is very useful in many
- problems.

[1L. Spherical Coordinates. The point P(p, 6, $) can be lo-
.cated by the spherical coordinates p, #, and ¢ as indicated in
Tig. 175. Again the coordinates of a point in this system are
not unique but many problems are readily treated by spherical
coordinates and are difficult in rectangular or cylindrical
coordinates. '

The following substitutions will transform from one system

to another. O\
Rectangular 1o Cylindrical Cylindrical to Reclanguldr)”
x =7c08 6 r=vet+y N
y=7rsm# 9=tan-12 m'\'\’
z2=2 PAS)
2 =2 \ \
Rectangular to Spherical Sphe ioal to Rectangular
¥ = pSin ¢ cos 8 p:xjjx2+y2—|—zﬁ
y = psin ¢ sin 8 o8 ;tan—lz
Z=pCoS ¢ o x
ANXY ™ z
= g
. P Y+ 2
Cylindrical to Spherigals Spherical to Cylindrical
t = psin ¢ \\N p=\/1’2-1—22
6 =0 O g =9
z = p oS é — tan ~
e\ z

The co%ﬁhate planes divide space into eight octants, the
first ocigms being the region where ¥, ¥, and z are positive. In
gffl'?rél’ihe other octants are not labeled. The majority of
«{umirork will be in rectangular coordinates.

97. Distance between Two Points. From Fig. 176 and the
formula for distance between two points in a plane we have
]1]?. =P1A2+A12‘
= (xy — x)* + (Y2 — y)® + (22— 2%

d= \/(xz — x) T e — 3"1)_2::?%2—:?-3_1-jE
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—

z
i rd
e Po2,y2,22) 7 |
|
-
- |
el
-
- I3 T
o s A 2
/ Plfxmm.zél - I
- = ALY
—— i X &\A
/ I 'S\
| N\
DT 7 A £
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L ~— A
o1 . ~~,\\'

¥
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98. Projections. The projection of. & signed segment AR
(Fig. 177) upon a plane r is the signed segment A’B’, lying in
the plane, joining the feet of thg;ge’fpendiculars from A and B
to x. Similarly the projection\of AB upon a line L is A"B",
the signed segment cut off by the perpendiculars dropped
upon L from A and B, , %

N\
A\
7 \‘./’
Bn‘
4 \\
N© N
734 \\\
O\ A .
N/ . \\
N\ .,

o N v |

N | '1
a\% | :
4 l !

11 L

Fic. 177

99. Point of Division. By analogy with the methods Otf'
§ 10 we find that a point P(x, y, z) will divide the segme?
PP in the ratio r,/7, if
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0 x x1fs + x2?'1’ W T ¥ z 21ts + 4sty
= - . - > -_
T+ T 1 -f #3 1+ 7o

If 7:/7, is positive, P is an infernal point of division; if r/7,
is negative, £ 1s an external point of division. In particular if
P is the midpoint of PP, then

=_Ft X o WAV B2
[2) X = I3 » V= 2 r 2 = 2

Equations (1) give the coordinates of the center of gravity of "\
masses 71 and 7 placed respectively at P, and Ps. o\

N/

100. Direction Cosines. Two intersecting lines ing ’si}ace
determine a plane and the angle between them is défined as
in the plane case. Lines which do not intersect"f;h“e called
skew lines and the angle between two skew linegN5 defined as
the angle between two infersecting lines pa;’a;@f fo them and
having the same sense. \\

Z .

~O° Fic. 178
) 3 .
H‘he angles o, 8, and y which a directed line (or line segment)
Makes with the positive x-, y-, and z-axes respectively are called
the direction angles, The direction angles are umque for a
Bven sensed line. The direclion cosines of a sensed line are

A = COS o,
y = CO8 v,
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while those of a line without established direction are A, g, vor
—\, —u, —v. Direction numbers of a line are any number
a, b, ¢ proportional to the direction cosines. Thus a =&,
= ku, ¢ = kv are direction numbers.
(2) CDSa:x——2;x1, cmﬁ:yngyl, cosvm?“?—}-‘a—‘
Thus the difference in the respective coordinates of any ‘i
points on a line are direction numbers of the iine. The cortsat
of proporhonallty d is the distance between the two peqnts
Upon squaring and adding (2) we get 4
M4 o242 =1, 7\
Hence ~
vVa + B+ ¢ Ve L+ vVetbtd
101. Angle between Two Lines, 'ﬁﬁere is no loss in gener
ality in assuming that the two lifted” pass through the origin
Let P, and P, be any points on the Tines L; and L. respectively.
Then, by the 1aw of cosines, f‘; y

~f:= PLE = d? 4 df — 2 didacosi

(7% + O — PR e — )7 = it + 2 + 22 + W+
O 92 4 2 — 2 duda 0051

"N

\'\s.
7 XiXa L +Ziz".
O cos f = —-—+ayl—§-z—-"
P, . 1
xt\u'
:“\:‘.
‘.‘: Pe(x1,y1,71)
d
pQ(x2!y2JZZ)
g da
X

Y

Fic. 179
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But
A = ﬁ, — Y1 Py o= 2
1 d Hi d].’ i dl’
P ¥ Zu

M= T T g
Therefore the angle 8 between two directed lines will be given by
(L) €03 8 = Aihz ++ puuz + vwvs
The acute angle between two undirected lines is given by

(2) €088 = | Ahe + pupz + vwa]. [Compare with (2) and (3)" 2]
§13.]

X

102. Parallel and Perpendicular Lines. Two linés “are
parallel . N
(1) If direction cosines are equal: \ '
M= Ag, g1 = g, V1= Vz'f\'v
(2) Or if direction numbers are proporuonal
Kﬂg, bl Kbgvt?j.. KCQ

Two parailel llnes determine a plané parallelism is essentially
 two-dimensional concept.
Two lines are perpendu:u]@'

© I A 4; s + vire = 0;
[4) Or if alag +bb2+0152 = 0.
Two perpendicpnlaflines may intersect (determine a plane) or
they may be bkﬂW“’Ilﬂ&S in space.
N\
Tlustratioft? Transform the equation 22 = a* — 227 — 23" to
Cyiindﬁcal coordinates.
Sﬂllmoﬁ Since = x2 + ¥*
\t}le cylindrical equation is
2= — 27
lustration 9. Find the point P on Pi(2,3,5) Py(-1,2, =3)
which divides P.P; in the ratio 2.
Solution,

‘= (2)(3)+5(-1)(2>, 4 (3)(3);@(2), .= L@L@i;_ﬂ?l
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The point is P(%, &, £).

Ilustration 3.  Find the angle between the lines joining P(1, 2, -9,
@(—1, -2, 1), and R(0, 1, 4}, S(1, -3, 0).

Solution.

PQ =v4i+16+16 =6,
RS =v1 4+ 16+ 16 =+v33,

M=-% m=—% n=1 p
N S T I
V33 vas Ve (D
1—-848 1 9
cosf ==—2T 8 - — /33, \
3433 99 i N
Dlustration 4. Determine ¢; so that the t\}jé;ii'fles Li:a=]
b= —1,¢ =2; Ly:ay = 2, by = 4, ¢ < 2nare perpendicular
Solution. \9;

s + blbz -+ Cll"{'% ’Zgb,
2 — 4+ 26~ 0,
. b =1,

EXERCISES

1. Transform the equation pf’§ 2 to rectangular coordinates.
% Ans. 22 42 2=t

2. Find the midpoin,t'ﬂ:f\}le segment P{(— 2,3, — 4), (8, 5, 2).

(W Ans. 3,4, -1
3. Find the di;'ect%n cosines of the line making equal angles with the aus
\J Ans. n=p=» ="

4. Show that“the line through (5,1, — 2) and (— 4, — 5, 13) is the gt
pendiculg{’:k.r@éctor of the segment (— 5, 2, 0}, (9, — 4, 6).

‘\
al
Y



CHAPTER XIX
THE PLANE

103. Equations in Three Variables. We have seen that an
equation in two variables, f{x, ¥) = 0, plots a curve in two-
space, An equation in three variables, f(x, y,2) = 0, plots &%,
surface in three-space. e\

Two equations f(x, ) =0, g{x,y) =0, solved shnq{tﬁne—
ously, give the points of intersection of the two curvess Simi-
tarly two equations f(x, ¥, 2) = 0, g{x, 3, 2) =0, solved simul-
tancously, give the points of intersection of thestwo surfaces;
these points generally lie on a space curve whieh is the curve
of intersection of the surfaces. The simy.{[tﬁneous solution of
three equations F(x, ¥, 2) = 0, g{x, ¥V =0, kix, ¥, 2)=0.
vields the points common to the three surfaces. These points
are, in general, isolated points. %

It is important to note that g eurve in space is represented
by fwo simultaneous equations™

104, The Linear Equation. The simplest equation in three
variables is the linear*equation

oy A2+ By+Cz+D=0.

The left-hand,qlia;nber is a polynomial of the first degree in the

three variablés’ x, y, and z. We prove the following two

theorem&%’“ |

. Tk‘?"f!?}” 1. The graph of a linear equation in three variables

18 aPlane. .

S Jroof. Let Py(x1, yy, 21) and Ps(xz, ¥ zy) be two points o1
the surface

Ax+By+Cz+D =0
It follows that

) A%, + By + Cou + D =0,
3 . An+ BntCa+ D=0
117
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Multiplying (2) by 72/(r1 + 72) and (3) by 7,/(r; + 1)
and adding we get

X2 - Xel ¥ire + Yot C Z.iﬁ_ﬂi‘.
A 71+ T2 B 11+ 72 + T+ T2

which shows that eny point on the line PP, lies on (1),
(See §99.) The plane is the only surface such that the
line joining any two points on it lies wholly in it. Henc,
(1) is a plane.

Theorem 2. A plane is represenied by a linear equationf)

Progf. Consider a point P(x1, 1, 1) on the plane ¢ “and the
normal line L to = at P,. Let direction numbers “of L he
A, B, C. If P(x,y, 2) is any other point injx then L and
P,P are perpendicular to each other. Dn’ectlon numbers
of PuP are (x — x1), (¥ — 31), (2 — 2000\By (1), § 102, we
have PN

@) Alx — %) + By — 39 K &z —2) = 0.
This holds for all points P in, #and no others; hence (4}is
theequation of ». Since (4) i3 linear the theorem is proved.

+ D=0

The equations of the coordmate planes are x = 0, ¥y =0,
2 =190, the vz-, xz, x¥ pIanes respectively. The points of
intersection of a planr;\w1th the axes are called the infercepls
of the plane. T :imntercept is located by setting ¥y =z =10
in the equation, of the plane and solving for x. Thus th
x-Intercept iss(~1/4,0,0)., The other intercepts are simi-
larly determined. The lines of intersection with the coordinate
planes a:a\délled the iraces of the plane. The trace in the
xy- pla@qb given by the simultaneous equations

Ax+ By + Cz 4+ D =0,
~O z=0.
Hence in the xy-plane the equation of the trace is Ax + BY +
D = 0. The other traces are determined in like manner.
The plane is the space analogue of the line and the student
should review the latter at this time (Chapter IV).

105. Special Forms of the Equation of a Plane. The gener®
equation, Ax + By + Cz + D = 0, can be written in the
following special forms, which are both useful and interesting
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. Three-Poinl Form. A plane is determined by three
non-collinear points Pi(xs, ¥y, 1), Pa(%s, ¥s, 22}, Ps(%s, ¥a, 2Z5).
These must salisfy the general equation of the plane; that is,

{1 Az + By, 4+ Cz, + D =0,
{2) Axy + By, 4+ Czo + D = 0,
(3) AX3 + _By3 -+ cZ,r; + D=0

These three equations can be solved for the coefficients 4, B,

C, D {only three of them are effective). When these coeffi-
cients are substituted into Ax + By + Cz + D = 0 we have, \
the three-point form of the equation of a plane. The resuft ™
can be written most readily in determinant form: \

vy
HE T T PO S\

4— = 0 K 3

@ IJ Xy ¥ 2 1 ‘ g

Xz y3 oz 1 AN

This can be written in semi-expanded forn},ﬁéi’ng determinants

of the third order:

]J’l Z li x 21 1] x1~,’,}}:1 1 XL ¥
B) ¥y 2 liz— 1z 22 1|y+ 5;2'62"'3’2 Llz— %2 52 2|=0.
lys z; 17 |13 z3 1 CJ'xa ¥ 1 X3 Vi 2

II. Poini-Direction Form We
have already developed'\fhfs form
of the equation of a,g;kme in the
proof of theorem 25,§104. In {(4)
of that paragraphs<we wrote the
POint-directiqr(g T
A~ x) BBy ~ y)

N + Clz — 2)= G
Thess?;l.l\dent should make sure that

“inderstands why the coef-
ﬁ}‘-lents of x, ¥, and z in the equa-
tion of a plane are direction num-

bers of lines perpendicular to the FIG. 180
Plane,

”?- Normal Form. It is easy to convert direction nurabers
10 direction cosines, In Ax + By +Cz+ D=0 4, B, C
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are direction numbers of lines perpendicular to the plane; if
the equation is divided by VA* + B* + C* we get
Ax+By+Cz4+ D _

VA + B+ C
The coefficients of z, ¥, and z are now the direction cosines o

lines perpendicular to the plane. This equation can be writtn
in the form

(7Y MYty tre—p=0 AL

where p is the perpendicular distance from the origi { tethe

plane. For (Fig. 181) let ON = p and let P be agy~point it
7 “': "~

©)

NS Fic. 181

the plane. The direction cosines of ON are A, p, v and tho¥
of OP are x/OP, y/OP, 2/OP. Since p = OP cos § we ha®

by (1), § 101,
- AX ooy ¥
_ » OP(OP+OP+OP)
which reduces to (7).

Equation (7) is the normal form of the equation of plart
and (6) indicates the method of reducing the general equatio?

”\Z
3
N\
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to normal form. The sign before the radical VA2 + B* + C*
is chosen so that p is positive. This is done as follows: The
sign of the radical is
Opposite to D, if D = 0;
Thesameas C, i D =0, C = ;
Thesameas B,if D = C =0, B = 0
Thesameas A,iff D =C=B=04 0.

IV. Intercept Form. Incase the intercepts are g, b, and ¢ the

three-point form reduces to (\))
NN ©
X, ¥ 2 \
(8) PR i 1. &
V. Through Origin. The general equation red}lggs*fo
) Axr 4+ By +Cz=0 !
if the plane passes through (0, 0, 0). \\

VI. Perpendicular to Coordinate Plangss> Since Ax + By +
D = 0 represents, in two-space, a lifie'in the xy-plane, this
same equation will represent a plane\in three-space perpendic-
ular to the xy-plane. This is tresbecause the equation holds
for every point (x, ) on the Jine regardless of the value of 2.
Every point (%, ) on the(line may be thought of as being
projected in the z diregtion. The projection of a line is, in
general, a plane, X\

The equation of the plane perpendicular to the

Oxjrplane is Ax + By + D = 0;
.«\":.\“xz-plane isAx + Cz4+ D =05
\\ ' yz-plane is By + Cz + D=0

VIL ::Pevfpendiculaf to Axes. In one-space Ax+ D = 0,
Gr‘? ~\= &k, represents a point; in two-space 1t represents a hn_e.
three-space it represents a plane perpendicular to the x-axis.

The equation of the plane perpendicular to the
x-axis is x = k;
y-axisis ¥ = k;
z-axis is 2 = k.

lustration 1. Find the equation of the plane passing through the

three points (1,2, 1), (—1, 1, —2), @, 0, —1).
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Solution. Equation (5) becomes

2 11 1 11 121 12 1
1 -21jx—|—-1-21|y4+|-111z—|—-11-2{=0
0-11 1-11 101 10 -1

which reduces to s + 3y — 2z — 2 = 0.
IHustration 2. Find the equation of the plane perpendicular to the
line joining (1, 2, G) and (3, —2, 5) and passing through (1, 5, 8],
Solution. Direction numbers of the line joining (1, 2, 0).and
(3, —2,5) are 2, ~4, 5. The point-direction form is ()

A —x) + B ~3) +Ce —2) =0, ™

\ X

which becomes ~
2(x — 1) — 4(y — 5) + 5(z + 8 =\0
This can be reduced to
2x-4y+51+\58—0
IMustration 3. Reduce3x +2y — g.-’}-,g = 0 to normal form.
Solution. The normal form is o\
314292945 _
Yy
IMlustration 4. Reduceg™ 53 + 2z — 3 = 0 to intercept form
and write the coordi’rhtes of the intercepts.

Solation. The mM\ept form is

"/ +y+g=1

AV 3T 373
and tl{e;\fntercepts are (3,0,0), (0, —2, ) and (0,0, &

]]lusétmn 5. Write the equation of the plane passing through
2,1 2) and (3, 5, 4) which is perpendicular to the xy-plane.

o\ golut:lon The equation is of the form

vV Ax+ By + D = 0.
This passes through the given points and hence
A4+B+D=0,

from which we get A = -2, B = D.
The equation is, therefore,

2x—y—-1=0.
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Ttustration 6. Find the equation of the plane perpendicular to the
plane x — y + 22 — 5 =0, parallel to the line whose direction
cosines are 1, — 2, 2v/5/5, and passing through (5, 0, 1).

Solution. The normal form of the equation will he
@ Mtpyt—p=0 _
The direction cosines of the normal to the given plane are 1/V,

—1/v6, 2/+6. Since the two planes are to be perpendicular ¢
their normals must be perpendicular. Hence we must have

A 29 )
L E 2o, e
VB V6 Ty . O
or, simply, ' N
(2} A—p+2r=0 “\n

Again, the plane must be parallel to the givér' hne hence the
normal to the plane must be normal to the IQe. Thus

A_ _._1_2_\_/5"_{}\
5 ¢

ar .

3) l—2#+2}{5k=0.’

Solving (2) and (3) simultanep;fsvli} we get
A =2(V5 — 2,
uE2(v5 — Dr.
Then (1) becomes . ¢\
X\
2(v5 j~2)vx - 2(\/5 — 1wy +vz—p= 0
and this mysi'be satisfied by (5,0, 1). Hence

\~.\’“' 10(vVE — 2 +v—p =0,
r poe({10v5 — 19). We set » = 1 and obtain the final

equatlon of the plane:
(S2(VE ~ 2)x + 2(VE — 1)y + 4 — (10vE - 19) = 0.

N\ )
EXERCISES
1. Find the equation of the plane parallel to 3x —2y+67+5= 0
and passing through (1, 4, 1). Ans. 3x —2y+62—1=0.
2. Write the equations of the following planes:
(a) Parallel to the xz-plane through (1, 4, 6). Ans. y = 4;
Ans. 2=12;

(b) Parallel to the xy-plane and 2 units from it.
{c} With intercepts 1, —2, —4. Ans. x/1+3/~2+2/—4=1
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3. Find the perpendictlar bisecting piane of the line segment (2, 5, —3),

—4,2). Ans. 22 +9y —5z-~-9 =),
4 Find the numerical distance from the origin to the plane 7x — ¥ -+ 2 -
2 =10 Ans. 2/V5L

106. Distance from a Plane to a Point. L_et the distance
from the plane Ax + uy + »2 — p = 0 to the point Pi(x, 31, 21)
be d. The normal form of the parallel plane through P s

1) A+ wuy +oz — B+ d) =0

Since P, is on (1) we have O\
le+py1+vz;—p—d=0, \\

whence Y

(2) d=Ax1+ py1+v2r— P m'\‘\"

is the formula for the distance from a plané-fe’a point.

This distance will be positive if the plane separates the point
P and the origin; it will be negative if Iiahd the origin lie on the
same side of the plane.

INustration 1, Find the distance, from the plane x4+y—2z+2=01%
the point (0, —2, 3). v:.’

Solution. The normal for;p:’of the plane is
$ry—2z2+2 _ 0

:not\ __-\/3
and the dlstané}o {0, —2,3) is
_ 22842
= -:- .\_ V;é

111ua}£ﬁon 2. Find the
tequation of all planes tan-
O gent to a sphere of radius
./ 3 units centered at the
origin,
Solution. Any such plane
will be at a distance of 3
units from the origin,
Thus the equation is

Y
M+apytrz—3=0 Fic. 182

This is a two-parameter family of planes.
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107. Angle between Two Planes. The angle between two
planes is defined as the acute angle between their respective
normals. The angle between a line and a plane is defined as
the angle between the line and its projection on the plane.
Since the coefficients of x, », and z in the equation of a plane
are direction numbers of normals fo the plane, the angle between
A1I+BQ+C1Z+D1=O and A2x+Bzy+Cﬁ+Dgz0
will be given by \
(1) cos § = [A1A2+BlBD+CCQI '.s
VAR +Bl"+clz\/A22+Bz+Cz 2N
The acute angle between \*

MY+ py + o2 - =0
and

kzx-l—pgy—i“l’gz—pg =0
will be given by
{2) cos f= | Aot papstovs |- 4

108, Parallel and Perpendic- 43
ular Planes. Two planes willy |
be parallel if their normalgare
parallel. Hence the con\shtlon
for parallelism is \\ -

(1) Al = KA?, ,-Bi'= KB2;
Cr = KCp &

Two plan@s will be perpen-
dicular if'their normals are per-
pendicular. Hence the condi-
thn ior ‘perpendicularity is
Q) A1A2+Ble+CC2'_O

Tllustration 1. Determine the angle between x + 3 —2 + 7=0

and3x —y —6=0.

Solution.

Fic. 183

cosf =



186 THE PLANE [Ch, ¥ix

Tlustration 2. Determine the angle between the plane x +y
3z — 5 = 0 and the line joining (1, 2, 3) and (-1, 2, —1).

Solution. The angle between the line and its projection on the
plane will be the complement of the angle hetween the line and the
normal to the plane. The direction cosines of the given line ar
v/5/5, 0, 2+/5/5. Hence the angle sought will be given by

sing = M "
5v11
_ V5, O\
5\/11 £\

Ny

109. Systems of Planes. Consider the twé“i&lanes T
A1x+Bly+Clz+D1=0 and szA".:i"I_ Bg}"t‘sz'l'

D: = 0. The equation

(1) =+ km = (Aix + Biy + Ciz H.B0)
+k(Azx-+—B?&+C‘zJ—D)—0

represents a plane since it js
linear. It will be satisfied by, t,he
coordinates of any point otiithe
line of intersection of r;="0 and
we = 0 since each parenthe51s
will then be zero¢regardless of
the value of k\\Therefore (1)
represents the family of planes
through the~1me of intersection of
the twoogiven planes. It is a
singlﬁf)}ﬁ"ameter family.
. Ili}stration. Find the equation of
2% the plane contaming the line of
intersectionof x4-6 vy —324-3=0
and2x+7y—2z24 8 =0and
the point (2, —5, 1).

/
£

Rapf v

0=

/

FiG. 184

Solution. The plane will have the equation
(x+6y-32+3)+r2x+7y—2+8 =0

and this must be satisfied by (2,

—5,1), Therefore

2—-30-31+3) +kd—-35-1+8=0
k_..,,__
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S

The equation of the plane is

(x+6y—3z+3)—%(2x+7y~z+8)=0,
8x+ 13y +11z2+38=0

110. Condition That Four Planes Be Concurrent. From the
theory of determinants it follows that a necessary condition that
the four planes

A1x+Bly+Clz—|—D1=O, A2x+Bgy+CEZ+D2=01
A+ By + Cszg + Dy =0, Az + By + Ca + Dy 0y
NSy T

. shall meet in a point is M

N,
™

A1 Bl Cl D1 ‘ "
A, B Cs D, =0 .'u.\\'
A, By Ci Dif 7 g
Ay, By C: Dy :.\\.:

This condition is also sufficient prov}deh no two of the plapes
are parallel or coincide. This can bé written in the following
form, using determinants of the third order:

B, C D. B!:{:Ctl Dy By €1 Dy
4B, C. Ds|—ApBy* Cs Dy} +4s| By O D,
B4 C.g D.; i..,g B.; C4 D4 B& Cd D4
ST B 6 D
” —Ag Bg Cg Dg =0’
:.’\.3 By Ci Dy

Illustratiuii'.\mShow that the four planes x —Y% +z-~1=0
x—t—Qé’ﬁ’—:32+6=O, 2x-—3y+z___—1=0,_ and x+3y-—2245=0

at‘é concurrent. P
o"\jéfoiﬁﬁon. These are distinet, non-parallel planes.

1 -1 1 -1 9 -3 6
1 2 -3 6|_1 3 1 -1
29 -3 1 -1 5 -2 5
1 3 -2 5
-1 1 -1 1 1 -1] -1 1 -1
-3 1 —~1|+2| 2 -3 6l—| 2 -3 6
3 -2 5 3 -2 b -3 1 -1

= (—12) — (6) +206) — (-6 =90.
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111, Condition That Four Points Be Coplanar. A necessary
and sufficient condition that the four points Pi{xy, v, 2),
Pa(%s, V9, 22), P3(X3, ¥3, 23), Po(X4, ¥4, 24), DO three of which are-
coilinear, shall lie in a plane is

n oy oo 1
Xy V2 22 1 ~0
X3 Ya 2 )

Xi Y1 % 1]

This can be written in the following form, using detemmaﬂts
of the third order:

N

| Y2 Z2 1 Wy & 1 Y1 2 1 {yq 2.'1 1
i|¥Vs 23 1 —Xz2| ¥z Zs 1 +x3 Yo 22 1 Q—’J Zy 1 =0'
Ve 24 1 Y1 24 1 Vi 24 1 A 1

lustration. No three of the four pg)iQts? 2, 1.4, (-L41
(0,0,2), (=1, —1, 1) are collinear. _Shéw that they are coplanar.

Solution. No three of the points are: cbllinear, as can be sgen by
computing direction numbers gof tHe lines joining thcm in pais.
For example direction numhet8'ef the line joining the first pait are.
3, 1, 3 while direction numbers of the line joining the first and
third points are 2, 1,2™\Since 3, 1,3 are not proportional
2,1, 2 the first three'points do not lie on a line. Similarly for
other combmatlcmsp\ the pomts

But the four pouﬁtg\are coplanar since

14 1%

)
( 011 141 141) |141
o obl=2l 021 l 021]+0 011\+géi
—J\:}\i’ll -111 111 ~111
O =2-1+0-1=0
w\; 112, Résumé of Plane Formulae.
N EQUATION ForM
1) Ax 4+ By + Cz+ D =0 General
x y z 1
@) . yi oz 1i_ g Threepoint
X2 Y2 22 1

X3 ¥y 2z 1 o
3 A —x)+By —y)+Cz—2z) =0 Point-direct
4) M+ py vz —p =0 Normal
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(5] g + % + % =1 Intercept
(6) Ax 4+ By + Cz = 0 Through origin
Perpendicular to:
Ax + By + D=0 xy-plane
(7 : Ax+€Ce+D=0 xz-plane
By+C:+ D=0 yz-plane
Perpendicular to:
x=k x-axis
8 y =k 4-axis Ko
2=k zaxis NN
EXERCISES N

1. Find the numerical distance from the plane 3% + 23 #% 6 =0 to

)¢

the nearer of the two points (1, — 2,3), 0,3, — 3. \Ais. %\/1_4. :

2. Find the locus of 2 point which is always 7/ 3 unit;sﬁ'gm x+yt+a+1=0.
Ans. The two planesx +y +2 — 6 =0:—m§&+y+z+8 =0,

3. Find the angle between the xy-plane and 7 W2y - J=0
()Y Ans. cost = 254
4. Show that the three points Pi(l, 1, 1R:(2, 3, — 4), Pi—1 =311
secollinear. Ans. ge =1, bz = 2, cp=D; du = 2, By =4, 2 =— 10
6. Find the plane containing the otigin and the line of intersection of
544 y_2z 8=Oanddzr—3y+z+4=0 Aus 13x-5y=0
6. Find the equation of the piqhe passing through (1, 2, 1) and containing
the y-axis. ¢ '\“,} ' Ans, x —2 =0,
7. Showthatthefourpﬁnesx—ky—l—z—-3 —0,2x+2y—-2+1=0
t+y—5z—8=0and8x+3y+Tz—4= 0 are concurrent.
</

N



CHAPTER XX
THE STRAIGHT LINE

113. Equations of a Line. Two intersecting planes det
mine a line L, and the general equations of the planes Y

A Ax+ By +Ce+ D=0, O
@) A% + By + Coz + Dy = 0\

may be regarded as the general equations (sitnuitaneous) of I
Since any two planes through L will deterniine L, the egquatior
of a given line are not unique. Values\of #, ¥, and z whid
satisfy both equations (1) and (2) arqfhe coordinates of point
on the line, Q

114. Special Forms of the Eq’gé’ﬁons of a Line. Four speci
forms of the equations of a stkaight line in space are importan

*

FRN N
\ p( y p2(><2:)’2;22)
o~ Y, T
PGz ]
b\ T
{ A ‘ e\ <
O 2, N,
xo\“\ ' — ;—'X‘u)'/ e
"\1. T \t
’\\w /—
N \ ¥=w
\ yz/_ p
)
{
Fiz. 185

I. Two-point Form. The equality of the ratios

) fon_yon_zi-m
X2 — X ¥y — v 2y — &1
190
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is readily established from Fig. 185. These are the equations of
the line joining the two points P; and P,. The student should
not be confused by the manner in which equations (1) are
written; there are essentially only two equations and writing
them in this particular form is shorter and avoids repetitions.

IL. Symmelric Form. Since x; —xi=a, y,—y = b,
& —z = ¢ are direction numbers of the line we may write
(1) in the symmetric form

x—xl_y—yj_z—zl_ .\:\
2) e b ¢ 'S M
This is also called the point-direction form.

II1. Projection Form. WNote that 4D

y—» _ &2
Yo=Y Za— 2 RN
x‘—xl_z—“zl o:;.\
Xg — %1 2z — z%’.'::\
X=X Y=
Xy — X1 J’2:.’f"}’1
are respectively the equations,8f%the planes through the line
and perpendicular to the yz,, ¥z, and xy-planes. These are of
the form A

.B.i—?Cz+D=0,
. +~Cz24+ D=0,
..1,,Ax—|—By—|—D=O,

‘and are called 'h:e\ projecting planes of the line, and any two of
them are equations of the line. _

Iv, Pﬂ%ﬁaém'c Form. If we set the ratios in (2) equal to a
numbélt,}éay {, we get :

) x =x + 4,
\ ), ¥y =y + b,
z =2z + ¢l

These are the parametric equations of a line with parameter £
115 Reduction of General Form to Symmetric Form.
Ehmlnating x from the general equations

(1) Ax 4+ By + Cz + D, =0,
) Asx + By + Coiz + Dy = 0,
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we get

(3) (A1Bs — A:B)y + (A1Ca — ALz + (A1Dy — AD)Y =10
This is the ¥z projecting plane; it and either (1) or (2} const
tute equations of the line. By eliminating y from (1) an
(2) we obtain

(4) (B1A; — ByAnx + (B.C: — B.C)z + (B\D, — B2D1) =1}

the projecting plane perpendicular to the xz-plane. Equ
tions (3) and (4) are equations of the line. Solving them for

gives equations of the form & \)
x — x' >
2= ’ 7%
a NG
_y—-y K¢
5%
Hence the symmetric equations are .\
x—x’_y—.’J\{‘“__Z
(5) PR~ e

To obtain (5) we began bi‘eliminating x and y from tt
general equations. Now froth (5) we see that (¥, ¥/, 0) is
piercing point of the linednl the xy-plane. Had we eliminate
x and z we would hzqé arrived at equations of the form

\\x_—_x _ ¥y _z—z"
N a 1 ¢

which reve‘al'ﬁh;:«lt the piercing point of the line in the xz-pla
is (1", 0,,87). Similarly for the piercing point in the yz-plan

Iluétration 1. Write the equations of the line determined b
{=22,3,1) and (4, -2, 5).

¢\ “Solution. The two-point form vields

\ W
4

x+2 _y—-3 _z-—1
6 —5 4
IMustration 2. A line has direction numbers 1, —2, 6 .and pass
through (4, 5, ~8). Find its equations and its direction ©
Solution. The equations of the line are

x—-4=y—5=z+9_
1 -2 6
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The direction cosines are A = 1/V41, p = —2/V41, » = 6/V4L.
THustration 3. Reduce the equations of the linem=x —y—2z+3=0,
m=2x+v+ 2z —1 =0 tosymmetric form.
Solution. Eliminating x we get
3y+4z-7=0,

_y—4%
) z = P2
E]
z
.A
t ¢\
o\
« N\
y. Cg‘
X

.. ¢/
EIunlnatingQ:“we get
OV 3xt+z+2=
o\"' x+ 2
@ O s =5
"’\E“C\}Uéitions (1) and (2) are the projecting planes on the yz- and

) xz-planes respectively. Hence the symmetric equations of the
Iime are

I
=

g
if=a

i+35_¥y—- 2

~% -4 1 .

The piercing point in the xy-plane is (—% 5 0). In Fig. 186
AB is the line, ABFE is the yz projecting plane, f_lBC is the xy
projecting plane, ABD is the x2 projecting plane, A is the piercing
point in the xy-plane.
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Ilustration 4. Write the equations of the line x =5 - 21, y =
3+ 2 =—2 — 3¢in symmetric form.

Solution. From ¥ =3 +{ we get { = ¥ — 3. Substituting this
in the other two parametric equations yields x = 11 — 2y,

z2=7—3yor
x - 11
-2
2—17
Hence the symmetric equations are O\
r—=11_ vy _z2-T7 \\ .
z -1 3 ~\

The piercing point in the xz-plane s (11,0, 7). ¢

EXERCISES )
A

Write the equations of the following lines, '\ v
. Through (7, — 1, 2), (3, 2, — 4). \Y x—7 _y+1 _z-2

’.’ ,.ARS. 4 =_—=—.6_.
2. Parallel to’f-%—l =¢%‘ = <& trrough (1,2, - 3).
x—4 y-—2_z+3
Ans. 2— _l = __3
3. Through {1, 2, &) ana}erpmdmular to the plane 3x+7 y—2 z+1=0.
\\ Ans. 2222 il
A\ 3 7 -2
4, Through (‘3\4» 0) and perpendicular to the xy-plane.
x,\ Aws. 1:'—33"':4'
116.§émgle between Line and Plane. Let the plane be
— rl
AQ.ﬂ‘By-{-Cz-I—D =0 and the line x—éi == by
- 2 . .
?zvc—‘ As in Illustration 2, § 108, we define the angle ¢

between a line and a plane to be the acute angle between the
line and its projection upon the plane. Since this angle ¢ ¥
the complement of the angle between the line and a no

to the plane it follows that

| Ae + Bb + Cc )

VY Ty oV
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117. Direction Numbers of the Line of Intersection of Two
Planes. Let the planes be given in general form.

) A + By -+ Cz+ D =0,
(2) A;:x + Bzy “I“ CQZ + .Dz = 0.

0Of course (1) and (2) taken together are the general equations

of the line L of intersection. Let direction numbers of the line

bea, b, c. Now L is perpendicular to the normals to each plane. . /A
Therefore

O\
3) A+ B+ C =0, R
(43 Agg + Bib + Cxc = 0. A
Solving (3) and (4) for the ratios @ : &: ¢ we get .\.\*
. _Bl Cl._Al CII_A]_’":B]
{5) a.b.c—‘Bg CB!' a Czli]{ﬂ} B,

118. Direction Numbers of the Normzii}o Two Skew Lines.
There is one and only one line in space that is perpendicular
to each of two skew lines and which At the same time intersects
the skew lines. The segment_ thats cut off the common pet-
pendicular is the distance between the lines.

The problem of deterrmgng direction numbers of the normal
is essentially the same asthat of determining direction numbers
of the fine of interseftion of two planes, as was done in the
preceding paragraphy For 4y, B, C, and A, B, C: are direc-
tion numbers of%Wa certain lines and (5) of § 117 gives direction
| tumbers g, b ’zxof the normal 1o these [ines.

Illustrat%n 1. Find the angle hetween the plane 2 x—-3 y+2z—4=0
andthellne3x+y+23—1 =0, x+7y—2z2+5=0

\”Sghxtlon. Direction numbers of the normals to the plane are 2,

—3, 1. Direction numbers of the line are

‘ 1 2] |3 2113
) ‘11

g:h:c = -
1 -2

Hence we may take

az__]'ﬁl b=8, 6220,
or =-4, b=2 ¢=05
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The angle ¢ is given by

ing - ——1=8=6+5]

VIF9FIV16 +4-+25
9
C V14vas
= V70,
Tustration 2. Find the angle between the line joining P40, —5, 4|
and Py(1, —4, 3) and the normal to the twolines [, x + y + 5 =A
Sy+2z47=0and Il,2x+2v+2—11=0, x+4y+z —IGTD.’

Solution. Direction numbers are: \ \)
Of PP, 1,1, ~1; A
ofi 2 -2 3; A\
Ofll, 2,1, —6; ¢
1 -6 _|2ys6||2 1 l
Of the normat to Tand I8, | 5 ~5 | = [ROT 1|3 3}
or 3,6, 2. \\«
The angle between the two lines is gi}{é{lkby
3 6= 2
cosf = ———
V3
:_f‘ﬁ
o 3

Mustration 8. Find the ’c'listance bhetween the skew lines x + 2 -
6=0,z-2=0and P(1,2,3), P,(-2,70).
Solution. A plaq'({i:‘firough the first line will be of the form
O @4y -6 +kz~2) =0
This will ‘hé‘parallel to P,P, if its normal is perpendicular to %
tha;\xfs\ 1t
O 3—-5+3k=0,
R k=2

,..\n”’l‘he plane through the first line and parallel to the second !
. therefore
; 3(x+y—6) +2(z ~2) =0,
3r+3y+22-22=0
The distance sought will be the distance from this plane to an
pointon P\P;.  Taking P;itself we get for the distance

go3+6+6—22
, V22
=E"\/2_é.
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The negative sign indicates that the plane separates the origin and
P.. The numerical value of 4 is what was wanted.

EXERCISES

1. Find the angle between the xy-plane and theline2x —y 4+ 22 -5 =0,
rt+y—z46=0 Aus, sing = 4V42.
2. Find the angle between the two lines x—y—42=0, 2x—y+32-1=0
amdx+y+z2—2=0x—y+bz—-5=0 Ans, 8 = 90°4
8. Find the distance between the two lines x — 2y +2+9 =0, 23+
y—2z—10=0andx+3y+2z245= 03x+4y+2z+1—0.\\

0.
4. Find the distance from the line I 2. :'%{% = 2%6 tQ"J:he point
(=1,1, 1). 2 \\Am V21,

§. Find the equations of the line which passes through\i{g 1,2, — 3 and

v.hlchlspdmllelmeachoftheplanessx—3y—1—2z—8 ‘Oand4x + v —
dz—-7=0 Ans.:&?l y2—62 ZEB'
LV

A



CHAPTER XX!
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119. Surfaces and Curves. In three dimensions we must
consider two kinds of loci, namely surfaces and curves The
locus of a point which satisfies one condition f{uw v, 2 2) =01,
in general, a surface. The locus of a p01nt,§1vh1ch satisfies
simultaneously two conditions f(x, y, 2) =0nglx, 3, 2) =01
in general, a skew curve. An equation oche formf + kg =0
is a surface passing through the curve £50,¢=0.

A skew curve may be represented Jparametrically by three
equations of the form x = f(), y=g(D), 2 = k(). (See para-
metric equations of a straight lme IV, §114.) A surface may
be represented parametrlcaliy by x = flt, 1), ¥ = 8(h, tah
z = h{ty, t;) where #, and 7,°are two independent parameters.

Rectangular, cyhn@;{:al or spherical coordinates may be
used in the represent\aj;ion of surfaces or curves.

120. Cylinders,> A surface generated by a line moving
parallel to a fi¥ed line is called a cylinder. The moving line i
called the gonerator (or generatrix) and it may be made to follow
a gwen\@rectmg curve (or directrix), plane or skew. A partic-
ular _generator, or position of it, is often referred to as an
elemenff of the cylinder.

“\NOf special interest are the cylinders whose elements are
})erpendlcular to a coordinate plane. An equation f(x, ¥) = 0
in the xy-plane, represents a curve. In three-space this samé
equation represents a cylinder since, for any point (x, ¥) on the
curve in the xy-plane and regardless of the value of z it is
satisfied by the point (r, »,z). The cylinder is perpendlclﬂaf
to the xy-plane; its equation has no z-terms. This is typic
and we build up the following outline.

198
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Generator Perpendicular to Equation of Cylinder
xy-plane fx, ) =0,
or f({r, ) =0 (Cylindrical
coordinates)
xz-plane ' flx,2) =0
yz-plane fiy,z2) =0
Dlustration 1. Sketch the cylinder 3 = 4 px.
Z A o
)
7\ ¥
. \J
O
'
O
X

Y

L \Fe. 187

4 ’ . .
Solution. In the N&alhe this is the equation of a parahola in
standard form.AProjecting this curve gerpe_:ndlcldar to the xy-
plane gives gparabolic cylinder shown in Fig. 187.

Fic. 138
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Illustration 2. Write the equation of the cylinder perpendieular to
the yz-plane whose directing curve is the ellipse in the yz-plane
with major axis 6 in the z-direction and with minor axis 4, the
center being at (0, 0, 2).

2 . 2 1]
Sotution. % 1 (2_9_.,._)_ -1,
EXERCISES
Sketch the following cylinders, <K )
1. " =22 =1, .;.\
2ottt =1 (~.."«.

3. r=oc0s30.

m\

121. Cones. A surface generated by a Nheérmoving about 2
fixed point on it is called a cone. The mevihg line is called the
generator (or generatrix) and the fixed point the sertex of the
cone. The generator may be madate follow a directing curne
(or directrix), plane or skew. \A” particular generator, or
position of it, is referred to af“an element of the cone. The
two similar portions of the cbne separated by the vertex ar
called the nappes of the cone.

Every equation in fHree vari- z
ables each of wh e'\‘teims is of
the second degree ‘epresents a
cone with vertex’at the origin.
Consider as('a“special case the
equation../

OF ¥ _ 2 _
(1) 3 + = 2 = 0.
'"‘l.f (x ¥, 2’) is a point on this
\surface so also is (kx', by, kz’)
Since every point of the line join- ¢
ing the origin and (x/, ¥, 2) has ]
coordinates of the form (kx’, &y, Fic. 189
kz'y the surface is a cone with
its vertex at (0, 0, 0). It is called an elliptic cone since everY
cross section of it by a plane z = const. is an ellipse.  (Se€ §60
The axis of the cone is the z-axis.
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Iustration. Write the equation of the cone with vertex at

- ¥(-1, 1, 0) and with directing curve 4 2? + 22 — 4 = 0, y = 0.

Solution. Let an element VP’ connecting the vertex and any point
Pz, 3_1’, 2’} on the directing curve pass through P(x, 3, 2), a gen-
eral point on the cone. The symmetric equations of this element

are
') x+1=y—1=g_
*+1 ¥y -1 27
Further, since P’ is on the directing curve, we have )
.”\.
@) 4z 427 —4=0, 3 =0, Dt

\C ' Frc. 190

We eliminate x’,,.j:f;z’ from the four conditions expressed in (1)

and (2). O

x\ ¥y =0,
S M g o=,
N a—5
‘n\ 3 = {x +y),
A 1-»
) Aty — 40—y =0

his last is the equation of the cone.

EXERCISES

1. Sketch the cone x* — y* + 2 = 0.

_ 2. Find the equation of the cone with vertex at the origin and with direct-
g curve y* = g, x = 3. Ams. 32 = 7z

122. Surfaces of Revolution. When a curve is revolved

‘about a line a surface of revolution is generated. As a special



o~

\
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case consider the curve f(x, 2) = 0 in the xz-plane and let thi

“curve be revolved about the x-axis. A point @{x, z) on the

curve will be turned into a typical position P(x, ¥, Z) on ik
surface whose equation we seek. Now

AQ = AP
for all positions P. But

Y D
Fige91
) AP=Vy £ 2
whereas {
@) \'\‘f AQ =z

From (1) and2) we see that in order to obtain the equation’
the surface, We must replace z in the equation of the curveii
Vit + £8We may, of course, then write 2 instead of
Hen@i:gf.‘f(x, z) = 0 is the equation of a curve in the xz-plan
the{@guation of the surface obtained by revolving this cur?
about the y-axis is f(x, V32 4 22) = 0.

\3\ In a similar manner we build up the following table.

Equation of Surface of

Equation of Curve in Revoluitor about the
xz-plane, f(x, z) = 0 x-axis, f(x, Vy* + #) =0

or xy-plane, f(x,y) =0

xz-plane, j(x, z) = 0 z-axis, f(VE + ¥, 2) =0
or yz-plane, f(y, 2) = 0

xy-plane, f(z, y) = 0 yeaxis, f(Ve + a5 3) =0
or yz-plane, f{y, &) = 0
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lustration 1. The line ¥ = mx is revolved about the x-axis. Find
the equation of the right-circular cone thus generated.

Solution. We substitute in the equation y = mx the quantity
vy £ 2 for y.
¥+ z2 = M,
wixt — 2 — 2 =0Q.
THustration 2. The hypocycloid y’? + & = a2 isrevolved about the .
z-axis. Find the equation of the surface generated.
N\

& FiG. 192

Soluﬁ(}n.
AY [ + 3 + 22 = df,
...\:“; (xQ +y2)3 + zs = ({a

Ilustration 3. The circle (x — @)? + 22 = #*isrevolved around the
z-axis. Find the equation of the forus thus generated,
Solation. The surface looks like a doughnut or an inner tube and
has the equation
(Vat+ ¥ —a)+ 2
x4t — zavxa_i_yzhbz 2,
(4 32 + 22+ @@ — B = 4 (" + )
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z

Q.
Fic. 193 R4
EXERCISES )
Find the equatiosss of the following surfaces of fgvolution and sketch.
1. 22 =y, x = 0 about the z-axis, N0 Ans. 20 = 2 + 4
2. 2 =y, x = 0about the y-axis. . Ans, 2242 =1,
8 2% k32 =1,z = 0 about the x-:;]ads~ Ans. sp 42 =1

123. Sketching a Surfacg’.‘: “Although the pictorial repre-
sentation of three dimepstons in two and the sketching of
surfaces are more di{f@ult than plotting curves in a plane,
yet the procedures arg essentially the same. These include
the determjnatiqn\of v L, intercepis and traces; 11, extent;
M, symmetry, \INV, asymptotes; V, plane sections. Let t_he
equation ofhe surface be F(x,y,z) — 0. We summarize
the analyse®as follows: .

L. Inferdepts and Traces. For the intercepts on the x-axs
set »5'0, z = 0 and solve F(x, 0, 0) = 0 for the values of %
Similarly for the other intercepts.

“\Fhe traces of a surface are the curves of intersection with the
bordinate planes. For the xy-trace set z = O and sketch the
curve F(x, ¥,0) = 0 in the xy-plane, Similarly for the other
{races, .

L. Exieni. As in plotting in two dimensions determine
whether the surface is bounded. This is readily done in con-
nection with V.

HI. Symmetry. The tests are as follows:
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Symmetry with respect to IfF(x, 32 =

yz-plane F{—x7,2)
xz-plane F(x, —y,2)
xy-plane Fix,y, -2
z-axis F{—x, —3,2)
y-axis Fl~x,9 -2
x-axis ' F(x, —», —2)
Origin F{~%x, -3, —z)

IV. Asympiotes. In only a few instances will we treat
surfaces with asymptotes. Cylinders F(x, ) = 0 whose traees
in the xy-plane have asymptotic lines will have correspording
asymptotic planes. Similarly for cylinders perpengliféii}ar to
the other coordinate planes. In § 129 we shall in\veétigate a
surface that has an asymptotic cone. O )

V. Plane Sections. The most fruitful mF\tIhod of studying
a surface is by means of its plane section,\s.'.\ n general these

z

W

Fi1c. 194

Setlons are by planes parallel to the coordinate planes, each
%ction yielding a plane curve. We thus reduce the problem
of Plotting a surface to that of plotting parallel sections (curves}
of it. If the cutting planes are taken sufficiently close the
Qves in them will indicate the shape of the surfz_me' just as
olated but sufficiently close points in a plane will indicate
the shape of 4 curve.

Q"
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To study the sections parallel to the yz-plane we set x =
and sketch the curves F(k, y, 2) = 0 for different values of k

Iustration 1, Sketch the surface y(x* — 4) — (x + Dix =3 =0

_ F16. 195 LV
Solution. This is a cylinder perpendicular i the xy-plane since
is missing. (The xy-trace was plotteduin’ Fig. 31, p. 37.) The
planesx = -2, x =2, and y = 1 aré asymptotic planes.
Ilustration 2. Sketch the surface £ :—P:yz +z-1=0
Solution. We begin immediq;éi}r with the plane sections. Fo
¥ =k we get R
¥ =,f"~".[3’ -1 =&l
For a given value of k,,this’is a parabola, opening downward, with
vertex at (&, Q, lx“"x\k)' Moreover for each parabola pp = -}«
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that the parabolas are all congruent. This information alone is
enough to make a reasonable graph of the surface,
For y = k, we have
x+z=1-—-F,
which is a set of straight lines. Any two of them are paraliel.
The planes z = % cut cut the parabolas

v=—=-010-kL

There is symmetry with respect to the xz-plane, The surface IS an
parabolic cylinder with generators x +z=1—-%, y=4k, a,nd’
directing curve 2 =—(z — 1), x = 0. '\

Diustration 3. Sketch the surface x2 4~ 32 = 2, ¢ "

Solution. The surface passes through the origin anc{ Hes wholly
above the xy-plane since z must be positive og'2ero. There is
symmetry with respect to the xz- and yz-planes‘and the z-axis.
Indeed the surface is one of revolution al;)({utf the z-axis and we
may think of ¥ = z as the generating cur\ve in the xz-plane.

Sections for x = k are the parabolas. N/

P=(z- k?).
Z,.}:‘: A
N
T ]
N T
L) !
P s !
ﬁ 7'
2N\ !
W/ i
xt\m - ;r""‘*-
7"\
N /
s\ 1 X
NN N
a\"4 L
\ ) Y
Fic. 197

Sections for ¥ = & are the parabolas |
= (z — k7).
Sections for z = k are the circles
| r4+r=
The surface is a circular paraholoid.
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EXERCISES
Sketch the following surfaces.
1. 412 492 =4,
2. 244t =1
3. xyv=1.
4 Gty =1-=

124, Sketching a Curve. A curve is represented analytically
by the equations of two intersecting surfaces f = 0, g'=\{,
In general, surfaces intersect in skew (twisted) curves; ingpecial
cases the curves may lie in a plane. Since any twe.surfaces
intersecting in a given curve will define the curve we'tnay find
it useful, for purposes of plotting, to replace th@,fgii?en surfaces

A\

Fic. 198

by others. By eliminating x between f = 0 and g =90 ¥
obtain a cylinder perpendicular to the yz-plane and passité
through the curve. This is called the projecting cylinder of
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the curve, which may be considered the directrix of the cylinder.
Similarly we may obtain the other projecting cylinders. Two
of the three projecting cylinders may be used to advantage
in plotting the curve C as follows. In Fig. 198 let portions
of the projecting cylinders in the first octant perpendicular to
the xy- and xz-planes be

f+hg=uxy =0
ftihg=rix2 =0

respectively. Pass a plane = perpendicular to the x-gxis)
through (%, 0, 0) cutting out on the projecting cy]jndgfs\the
generators AP, and BP,. P, is a point on the cufve C of
intersection of # = 0, » = 0 and hence of the origifidl surfaces
Ff=0, g =0. In this manner as many point&Py; P, Pj, -
may be constructed as are needed to insuresasmooth graph.
It is desirable to retain, if possible, the graghs of the original
surfaces. o\

Since to sketch a projecting cylindef)is essentially to draw a
plane curve, the problem of plotting-a twisted curve in space
is reduced to that of plotting plane curves. The attendant
difficulties are only slightly inereased by the necessity of per-
spective drawings. r

~\
Tlinstration 1. Skethi the curve (1), + ¥+ 2 =4, 2), & - 1)
+» =1 N

| Solution. The(fitst equation evidently represents a sphere of
radius 2 withicenter at the origin since the distance from the origin
to any poiat (x, ¥, 2) on it is V2% + 3* + 2 and this, being equal
to 2 ¥ields equation (1). The second surface is that of a cylinder
petpendicular to the xy-plane whose trace in that plane is the
~icle of rad us 1 with center at (1, 0). Hence 2) is alregd)_f the
\\ -1y Drojecting cylinder of the curve of intersection. By eliminat-
ing  between (1) and (2) We get the equation of the xz project-

ing cylinder. Thus

24 -x-DY+2=4
2 =20 —2).

re with xz-trace AA
ete. follows the

Th? x2 projecting cylinder is parabolic therefo
in Fig. 199. The location of points Py Pr
method outlined above.
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Hiustration 2. Draw the line of intersection of two planes,

SKETCHING A CURVE

211

Solution. This elementary problem requires no elzborate theory

XaYy oz _
ﬁ1+b1+€1 1,
2 Y2
{a bg i '

SN

Sketch each pilane; where the traces intersect we have the plg*c\mg

points P, P;, Py and the jom of them is the line of interseetion.
l":‘

of projecting planes although the method would apply. Write
the equations of the planes in intercept form

N

N

——X

6 =0

Z p
2
|
{
1
1
A f
T3
i »
| IR
——— | Iad™
""h.\ i 0"~“ <
\1\+I “E:.:‘Ir‘
Tl
AN
Cm =N {\ plf
# 3 | J f\
. \ i QY
\ l]Pl I
o B
"\l
\¥; f
R0, |
T, Y i
:"\‘."
QP
2 E
Y
Fi. 201

Tlustration 3. Find the curve € of intersection of the cone
(1), 42* +43 — 22 = 0 and the plane 2), 6x+3y -+ 8z —
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Solution. The methed of projecting cylinders is numerically
involved. For example, the equation of the xy-trace of the y
projecting cylinder is

22022 — 36xy 1+ 247 + 722+ 36y — 36 = 0.

This is an ellipse but it is troublesome to sketch without a rotatio

of axes.
Instead we proceed as follows. Cut the cone with the plane x = k
The equation of the curve cut out is \

4y — 22 =458 t:\:\'
which is a hyperbola ABD, (See §60.) The plar}e{:};\;= k cut
the plane (2} in the straight line P,E and the intCVSE‘:QtiOHS of thi
line and the hyperbola yield points P, and P, orv the ctirve sought
Other points on € can be constructed in like m}mner

EXERCISES p \\;
Sketch the following curves, L&
L4 z2=1x4y=1
2.4+ =xtyt+z=1 ,‘."”'
LAyt =14 = (N
4. The locus of a point which $heves on the cylinder x2 4 3* = a* 50 the
the distance it moves parallel tevthe axis of the cylinder is directly propor
tional to the angle throughghich it rotates about the axis is called a circue
Jelin,  Derive the paran{ct}lc equations of this skew curve.
\\ Ans. x =acosd,y =asing, z=H



CHAPTER XXii
THE QUADRIC SURFACES

125, General Equation of the Second Degree. We have ™
seen that the general linear equation represents a planq ‘an
that two such determine a line. The general eguation.di the
second degree is Ay

Ax* + By* + Cz + Dxy + Eyz + Fxz + G+ Hy

+Kz+L=0; o

its graph is called the guadric surface. Thig stiwface is such that
any plane section of it is a conic, for which reason it is also
called a conicoid. A few examples were met in the preceding
chapter; we now discuss each of(the quadrics. Since the
methods of analysis have been fuliy: fllustrated in Chapter XXI
only the minimum outlines willbe given here.

126. The Ellipsoid. Qofl‘éiéler the special equation

SRS v 2
1) (GrEtast

L 3

The section cut ©ut by the plane z = 0 is the ellipse x*/&® +
2/ = 1 withisemiaxes ¢ and . The section by the plane
z="Fis tpg\élﬁpse :

O
N

Fic. 203. Sphere:

Fic. 202. Ellipsoid:
it g 2=

L
atmpta=t

213
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ST &
(2) a? + b =1- Cz’
or , A
3) A

2 b.
ae-» G-

with semiaxes g\/ ¢ — B, -b\/ ¢ — k. TFor k = ¢, equation (2)

shows that x = 0, ¥ = 0. The surface is bounded aboye and
below since | z | must not exceed ¢.

Similarly the sections cut out by the planes y = A, ahd x=k
are ellipses and |y | < b, I x| < @. The surfaceds éymmetnc
with respect to the coordlnate planes, the axeb\and the origin.
The semiaxes of the ellipsoid are «, b, ¢ and the center is at the
origin,

For ¢ = b = ¢ the surface is one of evblutlon and is called 2
spheroid (oblate if @ > ¢, prolate if pA <c). Fora =b=rcthe
surface is a sphere. The equatlon of the sphere in spherical
coordinates, with center at thewarrgm and radius g, is p = &

The equation

(x — B | (y— k" (z — Iy
@) o -+ bo\‘ + 2 =1
represents the sarhé\&llipsoid with the same
orientation of axes but with center at (%, &, 1).

127. They H&perbolmd of One Sheet. The
sections g\f: 23
N oy 2
O EtE-a
.aze, for
\/ z = &, an ellipse, |
¥ =k, a hyperbola (pair of straight lines p 204, Hyper

z

=1

itk = b), holoid of One Sheet:
x =k, a hyperbola (pair of straight lines » 2 2 _
if & = a). e ' E 8

Since the sections two ways are hyperbolas, the surface i called
a hyperboloid. The surface is connected (cne sheet) but is
unbounded. The smallest elliptical section occurs for z =0
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the xy-trace.  There is symmetry with respect to the coordinate
planes, the axes, and the origin. The axis of the hyperboloid
corresponds to the term with the minus sign and the center is
at the origin. '

The equation

2) (x ;2 h)* + v ; R? (2 ;—2 h? _ 1

represents the same hyperboloid with the same orientation but\

with center at (&, &, 1. A

128. The Hyperboloid of Two Sheets. The sections OF
2 2 2 N
\\
are, for O
2 = k, a hyperbola (pair of straight lines ik =12c),
y = k, a hyperbola (pair of straigl{t Jines if & = 8),
x = k, an ellipse. O™

N .

Fro."205. Hyperboloid of Two Sheets:

Ke ®_9_ 2 _
P @ B
This, tOO,»is\i hyperboloid; but since for sections x = |k
cannot_beJess than ¢, the surface is made up of two pieces or
sheets:\ ‘Again there is symmetry with respect to the coordinate
plafies, the axes, and the origin. The axis corresponds to the
“farth with the plus sign, the center is at the origin, and the
Points ( +a, 0, 0) are called vertices.

The equation

(2) & 2 b2 62

represents the same hyperboloid with the same orientation but
‘ with center at (&, &, ).
|

|
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129. The Cone. The sections of 2

x'.’. y’l z_
M 2t a0
are, for

z = k, an ellipse,
¥ = k, a hyperbola (pair of straight lines if

x = k, a hyperbola (pair of straight lines if
k= 0).

In §121 we showed this to be a cone with
axis coinciding with the z-axis and with vertex
at the origin. It is a degenerate quadric sur; €}
face and is a special case of a hyperholoidyas’
can be seen by considering the 11m1t1ng Qa%e F1c. 206. Eifiptic

Cone,
of the equation ,\ vty
x~ 2 32 AN fo E =i\
2 =4 -5 =
@ PrE =4

asd —0. Ford >0, (2) repi‘esents a hyperboloid of one sheet
with axis coinciding with the z-axis; for 4 < 0, (2) is a hyper
boloid of two sheets withwaxis coinciding with the z-axis. For
d=0, 2) is a cgme,\ asymptotic to cach
hyperboloid. Thb\\;ilane analogue to the z
cone is the pait ‘ef asymptotes to conjugate
hyperbolas. ‘(See 55.)
The equ&tlon

k) - k) 2=
,.J@};Sfesents the same cone with the same
\orientation but with the vertex at (, &, #).

130. The Elliptic Parabeloid. The sec-
tions of

2 2
1 CANTT SR
(1 P ‘ .
are, for Frg. 207. Eliptc
2 = k, an ellipse, Paraboloid:

¥ = k, a parabola,
x = k, a parahola.

x~+_,_,¢z
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The surface is called an elliptic paraboloid. Its axis coincides
with the axis of the term of lst degree, it lies wholly above
the xy-plane {for ¢ > 0), and its vertex is at the origin.

The equation

. G TS R

represents the same paraboloid with the same orientation but {
with vertex at (&, &, I). A

& N
131. The Hyperbolic Paraboloid. The sectionsof O

x‘Z y-
(1) o TG
are, for
i =k, a hyperbola (pair of
straight linesif =0},
¥ = k, a parabola,
X = k, a paraboia.

This surface is called a hyper:s': »
bolic parabeloid. It is saddle-
shaped and the point on L{at the origin is called a saddle point.

T £
h? equa?;on ( .\\k)z 1z
W= A _J’:_ - _
@ o - = e — D)

represents the;~same surface with the
same orle{tc‘rﬂon but with saddle point
at (k kgs

sa” The Cylinders. We have al-
\'Tl‘dy discussed the general cylinders in TN
§ 4

————— X

20. The quadric cylinders (degen- ——-————j}
erate quadric surfaces) are >’~‘/
x2 2 . Y

2 1 ¥~ 1, elliptic cylinder;

@ U p Fic. 209. Elliptic
X2 g2 N ) Cylinder:
o cylinder;
ol 1, hyperbolic cy xg ) P _

B

¥? = 4 px, parabolic cylinder;
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(x— W (v — &) 1 elliptic cylinder with axis x =,
e T =h y = k; )

{(x —h® (y—k?_ hyperbollc cylinder with axis x =,
@ » 1, v = k;

@ -k =4px — b,

parabolic cylinder with
line of vertices x =k,

y ==k

133. Résumé, We give a complete list of forms to whichd
second-degree eguation can be reduced (by rotationssand
translations). The simplest standard forms of the eqyétibns
are used.  §

a
<

NON-DEGENERATE QUADRIC SURFAC{S\

2
Ceniral + ig + = =+1, Elipscid (rea} of 1magmary)

Quadrics 1 | 3 3_2
B

41 Hyperboiéﬁé'(one and two sheets
- respectively)

x5 ) .
Non-Central I m=% E,Lpptlc Paraboloid
Quadrics 22 y2 i

pring c;:.f. Hyperbolic Paraboloid

DEGENﬁRATE (QUADRIC SURFACES

53\\1_2

Cone (real or imaginary)

‘bz ,
&z l"" _ Elliptic Cylinder (real or imagh-
£ 3 + b‘g - i 1!
't\" at nary)
\"\ -ﬁf: —%: =1, Hyperbolic Cylinder
O\ L
A\ x + ¥ Intersecting Planes (real or imag-
o . a b ’ nary}
S ) ¥* = 4 px, Parabolic Cylinder
¥2 =g, Parallel Planes (real or imaginary)
¥ =0, Coinciding Planes

Mustration 1. Tdentify and sketch 2 — 3t + 222 —4x — 63~
8z—3=0

Solution. We complete the squares on the x’s, ¥'s, and 2's separatelys
obtaining
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(x—22—~(y+3)2+2z—22=3+4-9+38,
ar

(x -2 _ (43¢ (-2 _
6 6 + 3 =1
Hence the surface is a hyperboloid of one sheet with center at
(2, —3, 2) and axis perpendicular to the xz-plane, Itisleft asan
exercise for the student to sketch the graph.

Illustration 2. Identify andsketchx? + 22 —3x—y +z2—-1= B
| Solution. Completing the squares we get p \:\
-8+ @+ir=y+4% O
This represents an elliptic paraboloid with vertex atd NI -

opening up in the direction of the 4y-axis. < )
Tlustration 3. Identify and sketch 42> — 838 1222 — 16x —
30y —24z—47 =0, \\
Solution., Completing the squares we ge(
4(xm2)2——3(y+5)2-+-12.z—1)2'—474—1{5-—75-!-12

e =0
=22 _ (+5 @>1" g
o T3 I N1 '
This is a cone with vertex at (2, —5,1) and agis perpendicular to
i the xz-plane. AN\

%N\ EXERCISES
Identify and sket(ih.

L4y — 2242y — 8y —42=0.
A0, et ol G2 g,

\ Ans. The hyperbolic paraboloid ~— yi
+3y2+2z?—-6y—3-'0 (y—l}
;! R\ Ans, The elhpscud —I— -I— 3"
i Qe
m:;ﬁ 2y =0, Ans. Apmr of planes.
N\Jt2n-y-22-4y-6=0 p_oim 2,
5 Ans. ‘The hyperboloid of two sheets T3 T1Th

. Write the equation of the sphere with center at (2 -5 1) and radius 6.
Ans, x =22+ @ o+ 18 = 36.

!i 134, Ruled Surfaces. A surface such that through any
| point on it there passes a line lying wholly on the surface is
called a ruled surface. Cones and cylinders are ruled surfaces
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and so are the hyperboloid of one sheet and the hyperholic
parabolotd. :

Equation (1), §127, of the hyperboloid
of one sheet can be written in the form

o (4390

Now let
X
r,zZ_ AN S Y O oY :
@) a+c_m(l—rb)’a c_m(l b)

For any value of s these equations represent ¥ ;
a straight line. It lies on (1) because if the
members of (2) are multiplied together 83\

results. Ny
But we may also write the equations¢ < Frc. 210
NIRRT~ SN VO’
3) a+i=nl b);.»a“ C_n(1+b)

These also represent a line otvthe surface and thus there are
two lines through a given point on the surface that lie wholly
on the surface. Each {ié of either system, (2) or (3), is 2
generator of the surfake)

Similarly the hyperbolic paraboloid (1) of § 131 may be
written in the form

A
SR A T A
(atbj(a b)—cz.

Fromzi’h\qs"we get the two sys-
temstof lines
P

XY _ r_y_1
TR TS Ty T R
¥ y_ 1 x ¥y _ Fi1G. 211
a+b ne g p = M

any member of which lies wholly on the surface and is a genera-
tor of the paraboloid.

135. Translations and Rotations. The theory of transforma-
Lions in three-space is similar to that of transformations it
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two-space though naturally more complicated in details.
(See Chapter X.)
The substitutions

x=x 4+ h
y=y -tk
z=z+1

will translate the origin from (0, 0, 0) to the point (&, %, ). For{\
- an equation with no cross-product terms this translationais

2\,

L7 N
Vi Pix,y,2) \ N/
P(X";Y’JZ’} " < ”":
(hik ) ' N
xi\\"
v N
5 X
Y o)

\Q"" Fic. 212

! essentiaily equiya‘.léht to the process of completing the square
" and will elighiate the non-essential linear terms from the
equation . 70>"

() A¥ By +Co+Gr+ Hy+ Kt L=0

If f;qﬁéition (1) represents a non-central quadric or a parabclic
evlinder there is necessarily one linear term which cannot be

moved.

Tllustration. Simplify the equation x* + 2% — 3»32 —-x +2y4+
9z — 16 = O by removing the linear terms and identify.

Solution. By translating axes to the point (%, k I) as new origin
we gel
(x’+k)2+2(y’+k)"—3(z’+l)2-(x’+k)+2(y’+k)+9(z'+0"16=0:

B0 g3 g (2 h— 15 (4 R 2y (6 [+ T+
VYR @R 9 -3 p—h+2 k+91—16=0.




222 THE QUADRIC SURFACES [Ch. XXI

To get rid of the linear terms we must take £ = }, k= -1, = 2,
The reduced equation is

2?4+ 29" —-32% — 10 = 0,

A (R
(2) 10 -+ 5 _IEQ_ -
The surface is therefore a hyperboloid of one sheet,
The process of completing the square would yield Q
(x ~ 30 + b +3r _ (- 0 .\:\‘
10 5 32 N
and the translation x = x' + }, y = 3’ — }, z = A ¥+ & would

reduce this immediately to (2). The center of; the hyperboloid
referred to the old system of axes is (3, —3 %‘%

Let the axes be rotated about the origi’so that the posmve
¥-, ¥-, and z-axes go respectively mto\the p051t1ve x'~, ¥'-, and
Z-axes. Let the direction cosinesnof the x'-axis, y’-axis, and
Z'-axis with respect to the old a_xe5~be LSRR THED VR TPRE TH F*

us vs respectively. P(x, y, zp and P(x, y', 2') represent the
same point in the two systgms

The equations of rotatiom are then

%’\— }\11: -L HY + vz,
\\j’ = MX o+ p2y + weg,
2= hgx + way + viz.

@ Z
I
:"\s v/ Xi

A

\"4 zZ' Pisx,v,z)
FX’J)"’!Z’)
V x

Y

Y!
FiG. 213
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A proper rotation of axes ahout the origin will remove the
cross-product terms that may be present; a translation wil
then reduce the equation te one of the standard forms listed in
§133. The complete analysis of the general equation of the
second degree is long and involved.

7
QO
o
1
~d .
>
L 4
'\\0
N\
N
'\(,
X \{“}
> O
QO
N
s‘ N SN
RS
» \ " \
\‘g .
N
t"\i\
g\'\\./’
N\
L)
7% N/
\&.}
O
\Y
\"4
&\\
N\
S
4
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APPENDIX A

SAMPLE EXAMINATIONS

EXAMINATION I N
2N
1. Write the equations of the following lines: N\ b
(a) Perpendicular to x — 2y — 7 = 0 through (2, 1); &
(b} Parallel to the line joining (1, 3), (0, —2) and passing

through (6, —4); \"
(¢) Through the intersection of x —w +6 =0, 3x+
4y — 5 =0and (-3, b). Ny

2. A triangle has vertices A(1, 3), \B{ -2, -1}, ¢4, —5).
- Find
{a) The area; ) ,,'""
(b) The angle CAB. f};’ :
3. Define a parabola and. derive its equation in simplest
standard form.
4. Sketch and 1denﬁfy
(@) 22+ 49y — B\)s+24y+31 = 0;
(D) 422 — 9% 18y + 27 = 0.
B. (a) Find“the equation of the hyperbola whose eccen-
tricity is 2@nd whose foci are at (4, 1) and (§, 1).
(b) fite the equations of the asymptotes.
6.\ n polar coordinates sketch 7 = 2 — 3 sin 6.
Y By least squares fit a straight line to the following data:

N/

\.

x Y 1 2 3

y | 1] 2z ] 23

8. Write the equations of the following planes:
. -1 3 z2-—-5
(a) Perpendicular to the line % 5 = ?—1]_— = ——g pass-

. Ing through (4, 2, —1);

227
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(b) Perpendicular to the plane x — 3y + 32z — 8 = 0 pass-
ing through (1, 1, 0) and (0,0, 1).

9. Find the direction cosines of the line x — y + 27 -
1=0,2x4+y+2+3=0

10. Identify and sketch the surface 32 — 242 -
6x—8y—-5=0

N\
EXAMINATION II '\\
1. Giventheline3x +4y — 20 = 0. Flndthe\ "
{a) Intercepts; (».‘.
(b) Slope; D
(c) Distance to (2, —3). s

2. Find the locus of a point which moves so that the sum
of its distances from (1, 1) and (2, 0) is S nits.

3. Prove that the line segment" \,]‘ommg the midpoints of
two sides of a triangle is paralleI o the third side and equal
to one-half its length. ,,,’ 3

(a) Write the equatxon of the radical axis of the two

c1rc1es
% 4 ot —5x+2y—8=0,
eEY+4r—3y—1=0;
{b) Which of the following equations represent parabolas?

O xe—-3»-2x4+y—-1=0,
A ) —y—2x+4+y-—1=0,
'S @ rx+»r+2x—y+1=0.

M rite the equations of the following conics:

N {2) The hyperbola with vertices at (—2, 0), {4, 0) and cor
"N\ ]ugate axis 10;
vV (b) The elhpse whose foci are at (4, 3) and (8, 3) and who
eccentricity is 1.
6. Sketch:
x—3

a = -

@Y= T on+

(h) r =2 — cos 6.

7. (a) Show that the curve whose parametric ©
arex = 2¢{ — b,y = 3¢ + 1 is a straight line;

quatifms
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(b) Transform the polar equation 72 = 1 + sin 4 to rectan-
gular coordinates.

8. Sketch:

@ y=2¢%

{(b) ¥ = sin x + cos x.

9. (a) Write the equation of the plane parallel to 3 x —

y + 2z — 8 = 0 and passing through (1, 2, —2); Q.
{bY Find the angle between the planes x 4y — z — 1* = 0
and3x+2y+3z2+4 =20 2%

10. A point moves so that its distance from the, xy—plane is
one-half its distance from the origin. Find the eqtlation of the
locus and sketch. S

EXAMINATION III\
1. (a) Derive the equation of tha\hne through the points

(%1, ¥1), (X2, ¥e)3
(b) Write the equation of the famlly of lines each member

of which s 2 units from the ongm

2. Prove that every ang}e inscribed in a semicircle is a
right angle.

3. (a) Find the equat:lon of the parabola with vertex at

2, —3) and dlrectéx y = 4;

(b) What arg. coordinates of the focus?

4. (a) Fmd the equation of the tangent to 5 9 +'1 =1at
the point, {2, — \/5-),

(b),\Sketch 42 —2 =1 and write down the equations of

the asyrnptotes
) b. Sketch:

- .
(8.) Yy = (x _ 1)(% +3)’

2 _ __L__.
O e P )|

fa) Sketch T =¢os 26;
(b) Transform (x — 1)2 + »* = 1 to polar coordinates.
(a) Find the points of intersection of the circle with

center at (3, 1) and radius 2 and the x-axis;
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(b) Through what angle should the axes be rotated to remove
the zy-term from 22 — 2xy + 33 —x + 2 =(?

8. (a) Write the equations of the two planes parallel t3
4x —2y+v5z2+1=0 and at a numerical distance of
3 units from it;

(b} Write the equations of the line x +2y +2 —1 =,
x— 3% — z+4 2 = 0in symmetric form. ~
9. The curve * +{y — 12 =1, 2 =0 1is revolved'a}{out
the x-axis. Find the equation of the surface generated{\ ™

10. A point moves so that the difference between its dis-
tances from (-2, 0,0) and (2, 0, 0) is unity. Find ‘the equa-
tion of the locus and identify. y \

ANSWERS TO EXAMINATIONS
Ezamination I X ,\
L@2Zx+y—-5=0; () 5x—y-34 =0; () 6x+y+13=0
2. (a) 18 sq. units; (b) tan CAB Tg
3. =4 px. N
4. (a) Ellipse with center at™ El -3) (b) Hyperhola with center at (0, 1\
5 () &8 _ 0 =

3\
by = V’3x4\1\ 6v3,y =—v3x +1 4 6V3.
7.y -1‘—[—3:;‘/5
8. (a)2x’—1-»\y 3z—13=0 BYy+z—-1=0.
LN 1
a9, —-—~_\'—_ —=,
;‘VQ;"'\/S"/:S

10. (Sore with vertex at (1, —2, 0) and axis perpendicular to the xz-plane

E:&fmnatmnll

)L (@) (3%,0), (0, 5); Dy m=—% (c) -2~
2.96x2-'-8xy+96y2—292x—108y—329=0.
4 @92 —5y+7=0; (b) (2 and (3.
5. (a) L—~-"_1)2w”—2=1- (b) ("'6)2 L=
7

12
. (@) ItsCartemanequatlonls3x-—2y+17—0
) & + ) 432 — 1) = 32
9. @3x—y+z+1=0; (b)oosﬂ:fg\/ﬁ_ﬁ.
10. The cone x2 - 32 — 32t = 0.
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Examination III
L) M py—2=0,04u=1

3. (@ @ —2) =-28(y + 3); () 2, ~10).
4. @) 4x—3vV5y —18=0; (b} y =+2x.
6. (b) + = 2cosa
7. (@) (3 +Vv3,0); (b) 22} degrees.
8. () dx—2y+VEz+1+15=0; () %-%_izﬁgg; N
9 (24 3 4 2 = d(yt + ), ;\\.:‘
10. 604 — 432 — 422 = 15, hyperboloid of two sheets, O
/&\3 '
AN
N
/,\\/
/~: &
XY
O~
&
O
N
Y
/~ o
\4
O
~0
S
N
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TABLE 1. SQUARES, CUBES, ROOTS 235
n n? v n? Vn n a2 v n? T
1 1] 1.000 1| 1.000 S 2,600) 7.181 - 132,651 | 3708
2 41,414 8|1.260 52 2,704{ 7.211{ 140,508 |3 732
3 9]1.732 27 | 1.242 531 2,808 7.280 145 877 |3.756
s 16 [ 2,000 64 | 1.587 541 2,916 7.348] 157,468 ) 3.780
5 25 2.236 125 | 1.710 55) 2,025 7,416 166,375 [ 5.803
5 36| 2. 489 216 | 1.817 56| 3,136 7.483| 175,616 | 3.826
5 49| 2,646 343 | 1,613 57| 3,245 7.550| 185,163 3.848
8 64| 2.0828 512 | 2.000 58| 8,364] 7.616] 195.1123.471
9 81| 3.000 729 | 2. 080 59| 3,481 7.681] 205 379 3.893)
1| 1oefssz| 1,000]2.154 601 3,600 7.746 216,000 | 3.9%0
N
n| 1213317 1,331 (2,224 61| 3,721| 7.810| 226,981¢\3.83¢
12{ 144 3.46¢| 1,728z 200 62| 3.844{ 7.878] 238,398 )3 958
13| 189 | 3.606 | 2,197 | 2,381 63| 3,969 7.937[ 250.047 ) 3.970
14| 196 {3.742} 2,744 | 2.410 641 4,09 8.000 2624144 | 4.000
15 225|3.8730 3,375 {2.466 651 4,225| B8.062|/)2%4,525 | 4.021.
16| 256 )4.000| 4,096 |2.500 66} 4,356 81240\ V287,496 | 4. 041
17| 289 4.123) 4013 ) 9.571 6T 4,489| £.J085) 300,763 | 4,062
el 3244243 5,832 |2.621 68| 4,624 €236 314,437 | 4.082
Rof 361|435 6,850 | z.66a 69 | - 4,761L{\g"307} 328,509 | 4.102
feo|  soofsarz! B 000 [2.714 10| 4,900 8.357] . 343,000 | 4.121
21 441 4.583] 9,261 | 2.759 71} Psced1] s.426] 357,011 | 4.141
<1221 484 | 4,690 10,648 |2.802 72| N, 184 | 8.485| 373,248 |4.160
B 5290 4.796| 12,167 |2.844 1S 05,320 e.sed!  3pe.017 | 4.179
M ST6[4.899 | 13,824 [2.884| [ T4 5,476 | a.e02| 405,224 [ 4.198
25 625 5.000 | 15,625 [2.924[ N[5 | 5.6257 &.660( 421,875 4.217
26 8761 5,099 | 17,576 | 2.962% | 16 5,776 | 8.718] 438,976 | 4,236
o 729 |s5.196{ 19,683 |3.000 7] s.920| 8.773| 456,533 | £.254
28 78415.291 | 21,952 |30t 78] .6,084| g8.832 474,552 | 4.273
29 841 |5.385) 24,383{31072 79 6.241| 8.888] 493,039 | 4.291
30| 900 | ¢ 477| 27,0003.207| | 80| 6.400) 8.948| 512,000 | 4.309
il 961 | 5,568 | ,20781 {3,141 Bl | 6.562| 9.000| 531,441 |4.327
(121 1,024 5.657\.G2, 768 | 3,175 82 ) 6,724| 9.055[ 551,368 | 4.344
B 1089 |5.745] 235 937 | 3.208 83| 6,889 9.110] 571,787 ] 4.362
RI 1,156 5,830 30,304 [3.240| | sa] 7.056{ 9.165| 592,704 | 4.380
¥ L22s\&.916] 42,875 |3.971 85| 7.225| 9.220] 614,125 | 4.397
361 1,296 %.000 | 45,656 | 2.302 85| 7,396 %.274| 636,056 ] 4.414
31 1,969 6.083 | s0.653 |3 332 87] 7,569 9.327| 658,503 | 4.431 |
381 494 | 6.164 | s54.072 |3.362 88| 7,744 9.3817 681,472 | 4.448
BMNL521 [ 6.245 | 59,319 {3,301 B9 | 7,921 9.434| 704,969 |4.465
04 1,600 | 6.325] 64,000 |3,420] | 90| 6,100 9.457| 720,000 | 8.481
2] V681 [6.a03] 68,921 [3.448| | 01| e.ost| o.539] 753,57 e
a| 1646481 74088 |sia76| | 52| aaea| o.592| rieican. e
;:3 L,849 | 6.557 | 76.507 13.503 93 | 8,649 9.643 aa4,351 a5
%] 1936 {6.633 | 85 184 |3.530 94| 8,836 9.695| 830,58 .ssa
912,025 [6.708 | 01,125 |3.557| | 95| 9.025] 9.747| 857,375 :‘5?9
:g 2116 15,782 1 97,336 13,583 95| 9.,216| 9.798 grli;z?g i
i 2,209 | 5,856 103,823 [3.609 97 5,409 | 9.849 981 102 | 6610
so| 20304 | 6.928 | 110,502 |3.634 98| 9,604 9.899 10,250 |4.626
L] 2,401 (7,000 | 117,649 |3.659 99 [ 9,801 | 9.95¢| 970, ik
50 000,000 |4.642
2500 | 7,071 | 125,000 [3.604] |ro0 | 10,000 | 10.000] 1,000, 7
:-J a? v’; n? ¥n n n? A_ n? pl




236 TABLE Il. COMMON LOGARITHMS
N. o 1 2 3 4 5 6 ? 8 9
10 § 0000 | 0043 | coas | o128 | 0170 | o212 | o253 | 0294 | 03ns 0374
15 | 0414 | 0453 | 0492 [ 0531 | 0569 | 0607 | 0645 | 0682 | 0719 | 0155
12 | 0792 [ og2e | 0864 [ 0899 | 0934 | 0969 | 1004 | 1038 | 1072 | 1105
13 1 1139 | 1273 | 2206 ) 1239 | r271 | 1303 | 1335 | 1367 | 1399 | vaze
14 ] 1461 | 1492 | 1523 | 1553 | 1584 | 1614 | 1644 | 1673 | 1703 | 1732
18§ 1761 | 1790 | 1818 | 1847 | 1875 | 1903 | 193F | 1959 | 1987 | 201
16 | 2041 | 2068 | 2095 [ 2122 | 2148 | 2175 | 2201 | 2227 | 2253 | o2m0
17 | 2304 | 2330 | 2355 | 2380 { 2405 { 2430 | 2455 | 2480 | 2504 [ 2590
18 | 2553 | 2577 | 2601 | 2625 | 2648 | 2672 | 2695 | 2718 | 2722 | 235
19 { 2788 | 2810 | 2833 | 2456 | 2878 | 2900 | 2923 | 2045 | 2967/ 2089
20 { 3010 [ 303z | 3054 | 3075 | 3096 | 3118 | 3139 | 3160 grar | az01
21 | 3222 13243 | 3263 | 3284 | 3304 | 3324 | 3345 | 3368™A3385 | 3404
22 | 3424 | 3444 | 3464 | 3483 | 3502 | 3522 | 3541 { 3%k ‘3579 | 3s%s
23 1 3617 | 3636 | 3655 | 3674 | 3692 ) 3711 | 3720 J43747 | 3766 | 37M
24 1 3802 | 3820 | 3838 { 3856 | 3874 | 3892 | 39090 \av27 | 3945 | 3362
2513979 | 3997 4014 | 4031 | 4048 | 4065 | 4682 4099 | 4ils | 4133
26 | 4150 14166 | 4183 | 4200 | 4216 | 4232 4249 | 4265 | 4281 | 4298
27 | 4314 | 4330 | 4346 | 4362 | 4378 | 4393([Ca409 | 4a25 | 4440 | 4456
28 | 4472 | 4487 | 4502 | 4518 | 4533 | S5A%)] 4564 | 4579 | 4594 | 4500
23 | 4624 | 4639 | 4654 | 4669 | 4683 | 4698 | 4713 | 4728 | 4742 | 475
30 | 4771 [ 4786 | 4800 | 4Bla | 482901 4843 | 4857 | 4871 | 4886 | 4000
31 1 4914 14928 | 4942 ( 4955 14965 | 4983 | 1997 | son1 | so24 | 50
32 | 5051 [ 5065 § 5079 | 509205105 | 5119 | 5132 | 5145 | 5150 | 5172
33 | 5185 | 5298 | 5211 | 5224 | $237 | s2so | 5263 | 5276 | S289 | sam
34 | 5315 | 5328 | 5340 | $353 | 5366 | 5378 | 5301 | 5403 | s416 | 5428
35 | 5441° | 5453 54659 5478 | 5490 | 5502 | ss14 | 5527 | 5539 | 5851
36 | 5563 [ 5575 | 5 $599 | 5611 | 5623 | 5635 | 5647 | 5658 | 5670
37 1 5682 5694 [R705 | 5717 | 5729 | 5740 { 5752 1 5763 | 5775 | 5786
38 | 5798 | 5809,4\5821 | 5832 | Sp43 | 585S [ S8e¢ | 5277 | 5888 | 5899
39 | 5911 75922¢l 5933 | 5944 | 5055 | 5065 | 5977 | 5088 | 5990 | 6010
40 ) 5021 [f'6 1 ) 6042 | 6053 | coss 6075 | sops | 6096 | 6107 | 117
11 51‘%" 6138 | 6149 | 6160 | 170 | 6180 | s101 | 6201 | s212 | 6222
42 | 6282 | 6243 | 6253 | 6263 | 6274 | 6284 | 6294 | 6304 | 6314 | 6325
43 406335 | 6345 | 6355 | 8365 | 6375 | 6385 | €395 | 6405 | 6415 | 6425
.38 ) 6435 | 6444 | 6454 | 6464 | 6474 | 64ns | 6493 | 6503 | 6513 | 6522
45 | 6532 | 6542 | 6551 | 6561 | 6571 | 6580 | 6500 | 6599 | 6509 | 6618
46 | 6628 | 6637 | 6646 | 6656 | 6665 | 6675 | geas | sg03 | 6702 | 6712
47 16721 Fa30 | 6739 | 6749 | 6758 | 6767 | 6776 | 6785 | 6794 | 6803
48 1 6812 | 8821 | 6830 | 6839 | 6848 | 6857 | 6866 | 6875 | 6884 5393
49 1 8902 16911 | 6920 | 6928 | 6937 | 6946 | 5955 | ¢964 | 6972 698
- 7067
50 | 6990 16998 | 7007 | 7016 | 7024 | 7033 | 7oa2 | 7050 | 7059 1087
SL | 7076 | 7084 ¢ 7093 | 7161 | 7110 | 7118 | 7126 | 7135 | 7143 T15§
52 1 1160 | 7168 | 7177 | 7185 | 7193 | 7202 | 7210 | 721e | 7226 7236
53 | 7243 17251 | 7259 | 7267 | 7275 | 7284 | 7202 { 7300 | 7308 73;6
54 7 7324 [7332 | 7340 | 7348 | 7356 | 7364 | 7372 | 7380 | 7388 | 73
N o 1 2 3 4 5 6 7 8 ® .




H. COMMON LOGARITHMS (Continued)

|| TABLE * 237
AT o 1 2 3 4 5 6 7 8 9
s | 7604 § 7422 | 7419 | 7427 | 7435 | 7443 [ 7481 | 7459 | 7466 | 7474

Sq | 7482 T490 7497 7503 7513 7520 7528 7536 7543 7551

ST 11559 | 7566 ¢ 7574 | 7582 { 7589 | 7507 | 7604 | 7613 | 7610 ( 7637

58 [ 7634 { 7642 | 7649 | 7657 | 7664 | 7672 | 7679 | 7685 | 7694 | 1701

52| 7709 } 776 | 7723 ) 773 | 7738 | v7as | 7752 | 7160 | 1767 | 7774
160 | 7782 T789 7796 7803 7810 7818 7azs 7832 T83% 7846

161 | 7853 | 7860 | 7868 { 7875 | 7882 | 7839 7896 | 7903 [ 7910 § 7917, 4N\

62 | 7924 | 7531 | 7938 | 7945 | 7952 | 7959 | 7966 | 7073 | 7980 | 7087

§3 1-7993 | 8000 ( 8007 | go24 | mo21 | soze | 8035 | sodl | sosn 80S%,
f4s4 1 8062 { aos9 | 8075 [ aosz | aoes | so9s | 8102 | 8109 | 8116 | g1z
{ | | 8125 | 8136 | 8142 | 2149 | 8156 { 8162 | are9 | s17s | aren Blan

€ 18195 | 8202 | 8209 | £215 | 222 | 5228 | 8235 | 8241 { 834 | 8254

67 (4261 | 8267 § 8274 | @280 | 8287 | 8293 | @290 { 8306 (L8812 sile

68 [ 325 | 8331 | B338 | 8344 | 8351 | 6357 | 4363 | 8370,{/8876 | 8382

J&‘J #4388 839_5 8401 8407 8414 B420 | B426 84'32‘\ - 8439 8445

170 [ 8451 | 8457 | 8463 | 0470 | 8476 | 8482 | s4ss B494 | 8500 | 8506
1 | es13 | asa0 | sses | asa1 | ss3z | 563 gsdo ) 8sss | sse1 | sser

8378 | 8579 | @saS | 8591 | 8597 | 8603.)-8509 | 8615 | se21 | se27
8633 | 8639 | 8645 | 8651 | 8657 | 8663INN8669 | 8575 | mse1 | asss
8692 | 8698 | e704 | a7io | a716 | aves\[Pe727 | 87337 | 8730 | 8745
2751 8755 8762 8768 ar74 ,37:{'9 B78S 8791 8797 8802
808 | B84 | 8820 { 8325 | 8831 YN8837 | 8842 | 8a48 | 8854 | a8so

18865 | sa71 | savs | asa2 | sse® | 2693 | gsou | sv04 | molo L8915

18 8921 | 8927 | 8932 | g93g | g943 ! 8949 8954 1 8960 | 8965 | 8971

" o7 | e9m2 | 89a7 | 8993 fNg9sa | 9004 | 9009 | so1s | so20 | o025

T - - -

8 19031 | o036 | ooap gui’?x\ 9053 | 9058 | 9063 | 9069 | 9074 | 9079

L g N

\

BL 15085 { 3090 | o098, {9101 | 9106 | 9112 { 9117 | 9122 | o128 | 9123

B 19138 {0143 9149 3 9154 | 9159 | 9165 [ 9170 | 9175 | 9180 | 9186

83 | 2191 { 9194 92017 | 9206 | 9212 [ 9217 | o222 { o227 | 9232 | 9238
W% | 5263 9248 53 | o258 | o263 | 9269 | 0272 | o279 | o28e | 0289
139 | 9204 9209709304 | 0309 | 0315 | 9320 [ 9325 [ 9330 [ 9335 [ 9340

86 9345 |sadsp | sass 9360 { 9365 | 9370 | 9375 | 938 | 9385 ] 9390

8219385 gras00 | o405 | oaro | o415 { o420 | oazs | o430 | 9435 | 9410

¥ 19445\Noas0 | 9455 | a0 | 9465 | 0469 | 9474 | 9479 | 948a | oago

P 24587 5499 [ 9504 | 9509 | 9513 | 9518 | 5525 | o528 | 9533 | o538

1N - r

e :
80532 | osar | 9552 9557 | 9562 } 9566 | 9571 ]| 9576 | 9561 | 9586
———]
119590 L osgs | g6p 4 | 9628 | 9633
0 19605 | 9609 | 9614 | 9619 | 962

99% %38 |9643 | 9647 | 9652 [ 9657 | 9661 | 9665 | 9671 | 9675 9232

Hog 9685 9689 59694 9659 9703 2708 | 9713 9717 | 9722 9”3

! 131 [9738 | ora1 | o745 | 9750 9754 | 9759 | 9763 | 9768 | 9

:5 17 19782 | 9786 | 9701 | 9795 |o9soo | 9mos | oeos | 9s14 | 9818

© 1223 {9827 | 983 : s4 | 9859 | 9863
2 |ve3s [oe41 |9sd5 | sase |98 .

;; 2958 19872 | 9877 | oms1 | 9ass | omoo | seo4 | 9899 | 9903 993228

5 | 5012 19917 | 9021 | 5925 | 9930 {9934 | 9939 | 9943 | 9948 0952

426 | 9961 | 0965 | 99s9 | oo74 | oars | 5983 | 9ver | 9991

%

o L 7 e 2

i 1 2 3 4 5 6




238 TABLE fil. NATURAL LOGARITHMS (BASE E)

00 | m .02 | .03 .04 .05 .08 07 | Los |

1.0 0.0000]|0.0100(0.019870.02961.0.0392(0.0448 (0. 0583} 0. 0677] 0. 07700,
1.110.095310,104410.1133(0.1222/0.1310/0.1398]0. 1484 0.1570] 0. 1655/ g
1.210.1823(0.1906 (0.1989)0.2070]0.2151(0.2221{0.2211{ 0. 2296] 0. 2455] 9.
1.3 0.2624/0.2700/0.2776|0.2852| 0. 2927( 0. 3001 0.3075( 0. 3148] 0.3221] .
1.410.3365(0.3436[0.3507[0,3577[0.3646]0.3716|0.3784[0. 2353} 0. 3020]4
1.5 0.4055(0.4121(0.4187{0.4253(0.4318|0.4383[0.4447| 0. 4521]0.4574) 0.,
1.6/ 0.470010.4762(0.4824]0,4886(0.4947(0.50080.5068| 0. 5128 0. 5188|p.
1.710.530610.5365|0.5423(0.5481(0.5539(0.5596|0.5652(0.5710)0. 578500}
1.8 0.5878|0,5933|0,508R(0.6043(0.6008[0.6152( 0. 6206] 0. 6259] 0. 63130"
1.9 0.6419(0.6471)0.6523|0.6575]0, 6627/ 0.657810.6729] 0. 6780 0.£83110.
2.0 0.693210.698110,7031(0.7080(0.7129| 0.7178] 0. 72271 0. 7278 0. 7324]0.:
2.1(0.741910.7467(0.7514 [0, 75610, 7608 [ 0. 7655 (0. 7701 [ 0. 2047 ]0. 7793 0.7
2.2 0.78850.7930|0.7975/0. 8020 0. 8065| 0. 8109[0.8154{ 0{ 848 0. 8242 /0.
2.310.832910.8373|0.8416(0.8459 (0. 6502) 0. 8544 | 0. a5a7 MrB629] 0. 5671 |0.1
2.4 0.8755/0.8796|0.8838| 0. 8879/ 0. #5320/ 0.8961] 09062 9042( 0. 5083 0.9
2.5 0.916310.92030.9243|0.9282[ 0. 9322( 0. 2351 [Dnod00) 0. 0430]0. 0478] 0.6
2.610.955510.9594)0.9632]0.9670| 0. 9708| 0.5746| 0 9783] ©. 9821 0. 9858 0.1
2.710.9933(0.99691.000601.0043|1. 0080]1.0928(1.0152(1.0188] 1. 0225[1.1
2.811.0296(1.033271.0367|1,0403|1. 0438} J0473]1.050811.0543|1.05781.0
2.9 1.0647|1.0682|1.0716|1.0750 1078414, 0618[1.0852] 1.0886(1.0919{1.0
3.011.0986]1.1019(1.3053)1.1086(1.4%18[2.1151(1.1284]1.1217}1.1248}1.1
3.1[1.131441,1346[1.1378{ 1, 1410/ 30942] 1.1474{1.15061 1. 1537] 1. 1569/ 1.1
2.211.1632|1.1663 (1. 1694 (1. 1728} 1756{ 1. 1787| 1. 1817] 1. 1848]1. 1878(1.1
3.311.193911.196911.2000|1, 2030['1. 2060 1. 2090 1.2119] 1. 2149} 1.2178} 1.2
8.4171.2238|1.2267(1.2296[1.%2326(1, 2355 |1. 2324 (1. 2433 1. 2442 1. 2470/2.2
3.5 [ 1.252811,2556)1.25861% . 2613] 1. 2641 [ 1. 2669] 1.2698| 1. 27261 1. 2754[1.2
3.611.280911.2837]1,9865|1.2092( 1. 20201 1. 7947| 1. 2075| 1. 3002| 1. 3029 1.3
3.7 1.3083 1‘3110\@.1’37 1.3164| 1.33191{ 1.3218) 1.32454] 1. 3271 [2.3207]1.3
5.811.3350(1,3396| 1%3403| 1, 2429 1.3455| 1.3481| 1.3507] 1. 3533) 1. 35581.3
3.911.3610]1.363901.3661 (1, 3686(1.3712|1.3737] 1.3762(1. 3788 1. 3813|1.3
4.0 1.3863{153%888(1.35120 1. 3038 1.396211.39087|1.4012]1.4036]1.4061}1.4
4.11 1412041761341, 4159]1. 418311, 4207]1.4231| 1 4255 | 1. 4270 1. 4303 L4
4.21 1.435¥7|1.43751.4308( 1. 4422 1. 4446] 1, 5260] 1.4493] 1. 4516] 1. 4540/ 1.4
4.3 ‘1\1586 1.4609]1.4633|1.2656| 1. 4679(1.4702] 1. a725|1.4748[1. 4712[1.4
4.40154816(1.48391 1. 4861| 1. 4884| 1" 4507 1.4920] 1. 4951 [ 1. 4974 1. 40961, 5
4| 1.504111.5063(1.5085|1.5107(1.5329]1.5151|1.5173}1.5105] 1. 5217|181
4061 1.5261 11,5282 1,5304[1.5326( 1.5347| 1. 5368|1. 5300( 1. 5412| 1. 5433[1.5
AA4-T | 1.5476 [1.5497(1.5518(1.9539]1.5560]1.558]1 | 1. 5602 1. 5623 | 1. 5644]1.5
4.8 1.5686(1.5707§1,5728|2.5748|1.5769]1. 5790( 1 5810 1. 5831] 2. 5851 1-5g
4,91 1.5892(1.591311.5933(1.5953{1.5974| 1. 5994 | 1. 6014 | 1. 6034 1. 6054]1:6
3.0(1.6094}11.6124[1,613412.6154)1.6174) 1.6104] 1.6214] 1. 6233 1. 6252 1-55
5.1)1.629211.6312{1.6332(1.6351]1.6372{1.6390| 1. 6409 [1.6425| 1. 6448 1‘65‘
5.2 1 1.64B71.6506(1.6525|1.654431. 6563 1. 6582)1 £601|1.6620] 1.6639 1-"&
g.a 1.6677(1.6696|1.6715|1,6734[1,6752| 1.5771{ 1.6790]1. 6808 m:ﬂ 11';’01
<4 1.6864|1.6882(|1.6901|1.6919 1.6938(|1.6956]1.5974|1.699371.7 L




\ TABLE ill. NATURAL LOGARITHMS (Continued) 239

. | .00 .01 02 4 .03 [ 04 |05 | .06 {.07 .08 | .00
g2 [5-3] 1.704711.7066|1.7084] 1.7102|1.712071. 1138 (1. 71561, X
wp) [5.6| 1.7228[ 1.7246(1.7253] 1, 7201 1. 7299 (1. 7317 1. 7334 i.?é?% }.gégﬁ i';gég
sig| |57 L1.7405]1.7422; 1. 7440 1.7457| 1.7475 |1.7492 1. 750911, 752711, 7544 1. 7561
ag| f 5.8 1.7579]1.7596(1.7613|1.7630| 1, 76471, 7664{1. 7681|1.7699(1.7716{ 1. 7733
o |5:9) 1.7750/ 2. 7766(1.7743)1.7800| 1. 7017 1. 7834 |1.7851)1. 78601, 7a04]1. 7901
gn| 6.0 1.7928) 1.7934;1.7951| 1. 7967| 1.7984|1.8001{1.8017|1.8024]1. 8050| 1. 80
ap| | 6-1| 1.8083}1.8099|1.8116(1.8132|1.8148]1.8165(1.8181(1.8197]1. 8213 1.2226
| {6-2] 1.8245/1.8262|1.8278[1.8294] 1.8310{1.8326(1.8342|1.8358|1.8374]1 8300
3 6-31 1.8405(1.842172.8437 1. 8453] 1.8469|1.8485(1,8500/1.8516)1.8532]1, 8547
gt || 6-4 18563 1.8579)1.8594| 1.8610|1.8625(1.8641]1.8656(1.86721. 8687{1 J8703
m| | 6.5 1.871811.8733(1.8749)2.8764]1.8779[1.8795|1.8610(2. 8025 |1 da4b[1. ense
19, | 6-6| 1.8871f 1.868611.8901/1.8916)1,8931|1.8946[1.8961(1.8976)152991 1. 9006
oty 6.7] 1.902111.903611,9051[1.9066)|1.9081)1,9095/1.9110,1.9125(1.9140{1. 5155
) 681 1.9169)1.918411.9199(1.9213] 1. 9228 1.9242]1. 9257|1. 527241, 9286/ 1. 9301
141 [6-%F 1.9313/1.9330)1. 2344)1.9359| 1. 2373 (1, 9387 [1. 9402|104 16 | 1. 9430|1, 3445
T 3
] 7.0 1.9459) 1.9473}1.9488) 1. 9502] 1. 9516 1. 9530{1. 95044, 9559]1. 9573/ 1. 9587
s [7-1) 1.960111.961571,9629|2.9643)1,9657|1.9671]|1,9685]1. 9699 ]1.9713]1.9727
| | 7-2( 1-97€111.9755]1.9769{2.9782|1.9796|1.9810)1,'9824| 1. 9838]1.9851|1. 0865
i[-]7-3| 1.9879|1.9892(1,9906[1. 9920 1.9933]1. 994719961 |1. 99741, 99882, 0001
yf| § 74| 2.0025|2.0026)2.0042(2,0055) 2, 0069 | 20082 2. 0096 2. 0109|2. 0122)2. 0136
il (7.5} 2.0149[2.0162(2.0176}2.0189] 2, 06202 )2 .0215)2. 62292, 0242 2.0255| 2. 0268
b || 7-6| 2:02R11 2, 0295 2. 0308]2.0321| 2. 0334 2. 0347]2.0360}2.0373(2. 03862, 0299
ol [ T.7] 2.0412) 2. 0425 2. 0438 2. 0452 ] 2, 0464 | 2. 0477 | 2. 0490] 2. 0503 2. 0514|2. 0528
| 2-8 2.0542(2. 05542, 0567) 2, 05000\2,0592 | 2. 0605 2. 0618 2. 0631 |2. 0543 [2. 0656
gl f 1.9 1 20066912, 0681 12.069412. 070712, 0719 2. 0732{2. 0744|2. 0757 [2. 0769 [2.0782
i [B-0] 2.0794) 2. 0807 2. 0819[200832) 2. 0844 |2.0857] 2. 0869| 2. 082 [2. 0894 (2.0906
sifl [ 8-1] 2.0919| 2.0931] 2. 0943) 2} 0956] 2, 0968 |2, 0950 2. 0992|2. 1005 |2. 2017|2.1029
ull [ 8.2 2.1041)2.1054|2. [066; 2. 1078) 2. 109012, 1102|2. 1114{2.1126 [2.1138]2.1150
ol [8-3] 2.11631 2. 1175| A 2187| 2. 1299( 2. 1222 2. 1223) 2. 1235 2. 1247 [ 2. 1259{ 2. 1270
wi|8-4] 2.1282|2,1294)2, P306|2.1318}2.1330|2. 13422, 1353(2.1365 2. 13772, 1389
g [8-5] 2. 1401 2. W13 2. 1424[2. 1436 2. 14481 2. 1459 2. 1471 [ 2. 1483 |2. 1494 |2. 1506
i [9-64 2. 1518) 2708%0 [2_1541[2.2552)2. 1564 |2.1576 (2. 1587 2.1599 2. 1610 2. 1622
61| [8-7] 2.16331'9M645(2.1656)| 2. 2668[ 2. 16792, 1691{2. 1702(2. 1713|2.1725|2.1736
oy | 8.8 2.1226)2. 1750 (2. 1770} 2. 1782 | 2. 1793 2. 1804 2. 1815 2. 1827 [2.1838 |2. 1849
1189 2,4861] 2. 1872{ 2. 1883} 2. 1894| 2. 1905|2.1917| 2. 1928/ 2. 1939 [2. 1950 2. 1961
g |90 2 1572!2. 1983 |2. 1994 2. 20061 2. 2017} 2. 2028{ 2. 2039 | 2. 2050 2. 2061 |2. 2072
i I R1y/2. 2083) 2, 2094)2, 7105) 2. 2116 2. 2127 2. 2138 2. 2148 | 2. 2159 |2. 2170 2. 2181
5 i\2,2 | 2.2192(2. 2203 2. 2214 2. 2225 2. 2235 |2, 2246 | 2. 22572, 2268 {2, 2279 |2. 2289
1 119.9] 2.2300]2, 2311 (2. 2522| 2, 23321 2. 2343 | 2. 2354] 2. 2364 2.2375 2. 23862, 2396
i |9-4] 2.2407] 2. 2428 2. 2420 2. 2439] 2. 2450 2, 2460 2. 2471 | 2. 2481 (2, 2492 | 2. 2502
11 [9-5 2.2513[2, 2523 /2. 2534 2.2544|2. 2555 [ 2. 2565 |2, 2576 2. 2586 12. 2597 |2, 2607
1119.6| 2.2618)|2. 2628(2. 2638 2. 26491 2. 2659 |2. 2670} 2. 2680 2, 2690 2.27012.2711
91127 2.2721|2. 2732 |2. 2742|2. 2752 2. 2762 [2.2773[ 2. 2783 (2.2793 |2.2803 2.2824
i 1(9.81 2.2024{2. 20954 |2, 2844|2. 20541 2. 2865 [2.2875(2.2885(2.2895)2.2905 (2, 2915
8 19.9] 2.2025}2, 2935 |2, 2945 |2, 2056 | 2. 2965 [2.2976 | 2. 298612, 2996 |2. 3006 [2. 3016
ol




240 TABLE 1ll. NATURAL LOGARITHMS (Continued)
N | Nac Lag | N | Hat Log N Nat Log N Nat Log N Nat Log
0| —a 401 3.6 BR8Y B0 [4.38 203 | 120 [4.70 740 | 160 | 5.07 517
110.00 000 |41]3.70 3867] 81| 4.39 a45]| 122 [ 4.79 579 161 | 5.08 14
2| 0.69 315 |42 | 3.73 767 214,40 672 1122 t4.00 4024 162 | 5. 08 740
3711.09 861 |43 (3.76 120 83 |4.41 8R4 | 123 | 4.81 218 163 | 5.09 375
411.38 629 44 | 3.78 419 84 | 4.43 0r2 | 124 | 4.82 024} 164 | 5.00 gy
S| 1.60 544 |45 | 3.80 666 RS {4.44 2651125 14,92 p31 [ 165 | 5.10 505
6 1.79 176 |46 | 3.82 BG4 | &6 | 4.45 435 126 | 4.83 628 166 | 5.11 199
711.94 591 147§ 3.85 015 87 | 4.46 591 [ 127 |4.84 419 | 167 | 5. 0L 458
B12.07 944 {48 | 3.87 120 88 [4.47 734 | 128 | 4.85 203 | 158 5,129
9[2.19 722 {49 | 3.89 182 89 [ 4.48 864 {129 | 4.85 981 | 169 | § b2 00
10| 2.30 259 150 ) 3.91 202] 90| 4.49 981 ) 130 | 4.6 753 17@‘ 5.13 580
1112.39 790 |51 | 3.93 1831 91 | 4.51 086 | 131 | 4.87 526|151 | 5. 14 146
1212.48 491 |52 4 3,95 1241 92 14,52 179 [ 132 | 4.8, 280 172 | 5.14 749
. 1312056 495 155 13,97 029 93 | 4.53 260 | 133 [4.pgN035 | 173 5.15 329
14 2.63 906 54 | 3.98 898 | 944,54 329 | 134 honne’ 784 | 174 [ 5.15 005
15 [ 2.70 805 |55 | 4.00 733} 95|4.55 388 | 135 90 527 [ 175 | 5,16 419
16 12,77 259 {56 | 4.02 535 | 96 | 4.56 435 135\\.4,91 2651176 | 5.17 048
17 [ 2.83 321 {57 | 4.04 305 97| 4.57 471&3? 4,61 098 ] 177 | 5.17 615
18 | 2.89 037 SR | 4.06 044 | 98 [ 4.58 «50 N2 [4.92 725 178 {5.18 178
191 2.94 444 |59 [ 4.07 754 99 | 4. 59 802 139 {4.93 447 | 179 | 5.18 T30
2012.99 573 {60 | 4.09 434 | 100 | 4. 808517 | 140 {4.94 154 | 180 | 5.10 29
21 1'3.04 457 161 ] 4.21 087 | 10X4%.61 512 f 141 [4.94 876 ] 131 | 5.19 850
22 1 3.09 104 ra2 412 713 L9029 4.62 497 142 4,95 583 [ 182 | 5.20 401
23 [3.13 549 | 63 [ 4,14 3134 103 [ 4.63 473 | 143 | 4. 96 284 | 183 | 5.20 ead
24 73,17 805 |64 | 4.15 888N 104 | 4.64 430 | 144 14,96 aa1 | 124 5.21 49¢
251 3.21 888 (65 | 4, 174489 [ 105 | 4.65 396 | 145 |4.07 673 | 185 | 5. 22 03t
26 | 3.25 610 |66 1 965 [ 106 | 4.66 344 | t46 14,98 361 186 | 5.22 573
27| 2.29 584 67N4.20 469 | 107 [ 4.67 283 | 247 [4.99 043 | 187 [5.23 111
281 3.33 220 168N4.21 951 | 108 | 4.68 213 | 148 [4.90 721 [ 188 | 5.23 544
29 |3.36 730069/{ 4.23 411 | 109 | 4.69 135 | 14% |5.00 395 | Jeo | 5. 24 175
. N |
30 | 3.40 120170 | 4.24 850 1110 | 4.70 0aa | 150 5.01 064 | LoD | 5.24'T02
311 3837399 171 [ 4.26 268 [ 110§ 4,70 953 | 15% [5.01 7on {101 | 5.25 227
3z ,s}s 574 1721 4.27 667 |11z [ 4.72 ase | 152 [s. 02 288 | 192 |5.25 750
I3NN8. 49 651 73 | 4.29 046 | 113 ] 4.72 730 152 |5.03 044 §193 | 5.26 269
| (3% [2.52 636 [74 | 4.30 207 | 114 4.73 620 { 154 |5.03 495 | 194 | 5.26 186
335 |3.55 535 175 1 4.31 745 {115 | 4.7 493 | 155 5.04 343 [ 105 5,27 300
36 |3.58 352 176 [ 4.23 073 {116 | 4.75 359 | 156 |5 04 yRf | 196 | 5.27 B
37 1 3.61 092 77 | 4.34 381 J117 [ 4.76 217 | 157 5.05 625 [ 197 (5.28 350
38 13.63 759 72 (4,35 671 [118 | 4.77 0rr | 158 |5 0n 260 | 108 | 5.28 827
39 [3.66 356 {79 | 4.36 045 (119 | 4.77 212 | 159 |5 06 aon {109 [5.29 330
40 | 3.68 888 |50 | 4.38 203 [ 120 4.78 749 | 150 507 517 pa00 [5.29 832




TABLE IV. NATURAL TRIGONOMETRIC FUNCTIONS 241

Degreea{Badians! Sin Cos Tan Cot Sec Czee
0 0000 | 6000 |1,0000| 0000} ----. 1,0000 | «e-em | 1,5708 [ 90
1 L0175 | L0175 <9598 L0175 | 57.2900 | 1. 0002 | 57,200 1.5533 89
2 .034% | . 0349 J99941 . 0349 ;28,6263 | 1.0005 | 28.654 [ 1, 5350 88
3 0524 [ L0523 L9986 L0524 [ 19.0811 | 1,0014 | 19.107] 1.5184 a7
4 L0698 1. 0698 -9976( L0699 | 14.3007 | 1,0024 { 14.336 | 1.501¢ 84
5 L0873 | .0RT2 29962 L O0B7S | 11,4301 1.0038 | 11.474 ] 7. 4935 g5
6 - 1047 1.1045 299451 L1051 9.5144 | 1.0055 [ 9.5668 | 1.4661 84
7 L1222 71,1219 £9925| 12281 8.1443 | 1.0075 | 8.2055 | 1. 4486 83
8 L1396 | L1392 L9903 1 , 1405 7.1154 ] 1.0098 | 7.1853 ] 1, 4312 82
9 L1571 | . 1564 L9877 (1584 | 6.3138 | 1,0125 | 6.3925 | 1.413% 8l
10 S1745 [ . 1736 [ .9848| .2763 | 5.6713 | 1.005¢) 5.7568 | 1.3963 2 80N
11 ~1920 | L1908 J9816| -1944 | 5.1446 | 1.0187 | 5.2408 1.3788\) 79
i2 L2094 | L2079 L9781 L2126 | 4.7046 | 1.0223) 4. 8097 1.,3614 78
13 L3269 4 ,2250 L9741 2309 [ £.3315 11,0263 | 4. 4454 | 163438 7
14 <2443 1.2419 | . 9703[ . 2493 { 4.0108 | 1.0306 | 4.1335{ Ap3265 76
15 2618 | .2538 | .9659( .2679 | 3.7321]1.0353 | 3.863%( . 3090 15
. ] i ! ] \
16 { .27931.2756 1 .9413( .2867 3.4874 ] 1,0403 | Jw52R0 | 1.2915 74
17 1 (2567 | .2924 L9563 3057 3.2709 1.045}‘\§t4203 1.2741 73
18 .3142 | .3090 | .9511| .3249 | 3.0777( 1,0505% 3.2361 | 1.2566 12
19 -3316 | .3256 | .9455) .3443 | 2.90s2 [ 1,057 3.0716 | 1.2392 | 71
20 1 ,34917.3420 .9397| .3640-§ 2,7475 W, 0642 | 2.9238 | 1.2217 0

21 -3665 | .3584 | .9336) »3839.| 2.6051 ["1.0711 2.7904 | 1.2043 | 60
22 3840 .3746 | .9272( .4040 | 2,4751 | 1.0785 | 2.6695 ) 1.1868 | 68
23 (4014 1.3907 § .9205) L4245 | 2.3559 1 1.0864 | 2.5593 [1.1694 | &7
24 4189 | . 4067 | ,9135| .4452 22460 [ 10946 | 2.4586 | 1.1519 | 66
25 4363 | .4226 | .9063[ .2668%2.2445 | 1. 1034 2.3662 [1.1345 § 5
26 4538 +.4384 | gons| 88?7 | 2.0503] L1126 22812 (11170 | 64
27 4712 [ .4540 | .891¢1\5095 | 1,9626 | 1.1223( 2.2027 {1.0996 | 63
28 L4887 | . 4695 | . sé\g..san 1.8807 | 1.1326 | 2.130L{1.0821 | &2
2% .5061 |, 4848 &4 .5543 | 1.8050] 1.1434} 2.0627 | 2.0647 } 61
30 L5236 | .5000 |N8660) L5774 | 1.7321| 1.1547{ 2.0000 [1.0472 | &0
31 5411 |, 5ps0y .8572| 6009 | 1.6643 | 1.1666 | 1.9416 |1.0297 | 59
32 .5585 | 5299 | .8480) 6245 | 1.60037 1.1792 1.8871 [1.0123 | 58
33 87601 446 | 8387 6494 | 1.5398| 1.1924| 1.8361{ .9948 [ 57
34 .59a4 [V 5592 | .s290| 6745 | 1.4826 | L.2062 | 1.7883 | 9774 | 56
35 .63%;’ .5736 1 .g192z) 7002 | 1.42817 1.2208 1.7434 | .9599 | 55
¢‘ .
36 46283 | .3878 | .g0s0| .7265 | 1.376a| 1.2361(1.7013 | 9425 [ 54
37 ("} Vsas8 | .6018 | .7986] .7536 { 1.3270)1.2521 ) 1.6616 | 9250 | 53
GENM L6632 §.6157 | .7880f 7813 | 1.2799F 1.26007 1.6243 | .9075 | 52
%9/ 1 .6807 |.a293 | .7771| 8098 | 1.2348( 1.2868 | t.5890 | L8901 5;
40 .6981 | .6428 | .7660| .8391 | 31,1918 | L.3054|1,.5557 | .8727 5

41 L7156 [ .6561 | .7547] .8693 | 1.1504§ 1.3250 1.5243 § .8552 ::
42 L7330 | 6691 | .7431 9004 | 1.1106 [ 1.3456 ] 1.4943 i.3378 4
43 L7505 | .ep20 { .7314| .9325 | 1.0724} 2.3673| 1.4663 | 8203 a7
44 L7619 {.,6947 | .7103| .9657 | 1.0355°[ 1.3902 | 1.4396 | .8029 1
45 L7834 1 7071 { .7071|1.0000 | 1.0000( 1-4142 ) 1.4142 |-, 7854

Radieng |[Degrees

Coa Sin Cot Tan Coc Bec
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TABLE V. VALUES OF et AND ox

* X X x e® ™%
0,00 1,0000 1. 00000 2,10 8.1662 0,122
0,01 1.0101 0.99005 2.20 9, 0250 0.1108
0.02 1.0202 0.98020 2,30 9,9742 0. 16002
0,03 1.0305 0.97045 2.40 11.023 0. 0907
0.04 1.0408 0.96079 2,50 12.182 0. 0820
0.05 1.0513 0.95123 2,60 13.464 0.0742
0.06 1.0618 0.94176 2.70 14.880 0.0672
0,07 1.0725 0.93239 2.80 16,445 0.6
0,08 1,0833 0.92312 2,90 1B.174 050550
0.09 1.0942 0,51393 3.00 20,086 A 00497
0.10 1.1052 0.50484 3.10 22,198 .6, 0450
0.20 1.2214 0.81873 3.20 24,533 “D.0407
0.30 1.3499 0,74082 3.30 27.113 \, 0. 0368
0.40 1.4918 0.67032 3,40 29, 9643 0.0333
0.50 1.6487 0.60653 3,50 33al45 3 0, 0302
0.60 1.8221 0.54881 3.60 {ggsga 0,0273
0.70 2.0138 0.49659 3.70 48, 447 0, 0247,

10.80 2.2255 0.44933 3.80 vd4. 701 0.0223
0.90 2.4596 0. 40657 3,90 I\ 49,402 0. 0202
1.00 2.7183 0,36788 4,005\ 54,598 0. 0183
1,10 3.0042 0.33287 4.7%;. 60, 340 0.0165
1.20 3.3201 0.30119 &2 66.686 0. 0150
L.30 3.6693 0.27253 A4N3D 73.700 0.0138
1.40 4.0552 0.24650 N4, 40 1. 451 0.0122
1,50 4.4917 0.22313 4.50 90,017 0,0111!
1.60 4.9530 0.20190 4.60 99.484 0. 0100.
1,70 5.4739 0.182680 4.70 169.95 0. 0091
1.50 6.0495 0. 16530 4,80 121.51 0. 0082
1.90 6.6859 0. 14957 4,90 134,29 0, 00745
2,00 7.3891 0<13534 5.00 148. 41 0. 006

e —
O
2N/
N
"\s.






INDEX

{The numbers refer to pages.)

Abscissa, 10
Ahsolute value, 28

" Amplitude, 148

Angle, between line and plane, 194;

" Binomial theorem, 1.

between two lines, 19, 174; between
two planes, 185; bisector of, 53;
direction, 15, 173; polar, 124

Antiparalle] lines, 17 :

Astroid, 156

Asymptote, 34, 90, 96, 134

Auxiliary circle, 87, 153

Axis, conjugate, of hyperbola, 90; co-
polar, 124; major, of ellipse, 81;
minor, of ellipse, 81; of parabola,
73; polar, 124; radical, of circles, 68;
transverse, of hyperbola, 90

»

Brachistochrone, 154

Cardioid, 132, 136, 140 )
Center of gravity, 13 &
girde, 80 :‘..t\
ircles, orthogonal, 706 €™

Cissoid, 141 ,D\\
Classification of conicg, 109, 115
Collinear points, 57/
Complex meer 28
Conchoid, 141,144
Congy it, lines, 56; planes, 187
Cone, 200,216; nappe of, 200

- Conigbid, 213
Cetties, 109, 112, 115

NS

gﬂgun’ic sections, 101
\ Zonjugate hyperbola, 92

Coordinates, cylindrical, 170; non-
rectangular, 10, 96; polar, 124;
rectangular, 9, 169; spherical, 171

Coplanar points, 188

" Curve, algebraic, 142; directing, 198;

. exponential, 149; intersection of,
39, 137; logarithmic, 149; pedal,
144; probability, 151; transcen-
dental, 142; trigonometric, 146

Curve fitting, 159

Curve tracing, 31, 131, 208
Cycloid, 154

Cylinder, 198, 217

AN
Degenerate, conics, 102; quéadric sur-
{aces, 218 R g
Determipants, 2 N

Diameter, 121 AN
Direction, angles,15, 173; cosines, 15,
173, 180; niwnbers, 15, 174, 195
Directrix, of allipse, 80; of hyperbola,
9%); of parabola, 73

Distancé, between two points, 10, 125,
17Y; from line to peint, 51; from
plané to point, 184

ﬁoentﬁcity, of ellipse, 80; of hyper-

¥ bola, 89; of parabola, 73

Ellipse, 80

Ellipsoid, 213

Empirical equations, 159

Epicycloid, 156 .

Equations, parametric,
taneous, 2

152; simul-

Factorial notation, 1
Family of curves, 53
Focus, of ellipse, 80;
of parabola, 73
Folium of Descartes, 157
Frequency, 148

of hyperbola, 90;

Function, continuous, 29; periedic,
29

Generator, 158

Greek alphabet, zvill

Helix, 212

Higher plane curves, 142

Hyperbola, 89 .

Hyperboloid, 214

Hypocycloid, 155, 203

245
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INDEX

Inclination, 15
Intercepts, 31, 24
Invariants, 115
Involute of circle, 158

Latus rectum, of ellipse, 81; of hy-
perbola, 91; of parabola, 73

Law, exponential, 163; linear, 159;
parabolic, 162; power, 166

Least squares, 161

Leminiscate of Bernoulli, 136

Limagon of Pascal, 136

Limit, 29

Line, eguation of, 45; equations of,
190; formulae, 58, 126; segment, 11

Linear equation, 45, 177

Lines, concurrent, 56; parallel, 17,
175: perpendicular, 17, 175; sys-
tems of, 53

Lituus, 137

Loci, 41, 198

Logarithm, 2

Mensuration formulae, 4 o\

Midpoint, 13
Normal equations, 161 ‘j:’. )

Oblique axes, 9, 25, 95\
Ordinate, 10 e

Ordinates, compoésggn' 1of, 149
Orthogonal circles,
Ovals of Caspini, /144

A\

Parabola, 78

Parabelaid, 216

Paféi el, lines, 17, 175; planes, 185
Paralielogram, 24

Parameter, 152

"\ Period, 148

N
h
\ }

*" Perpendicular Knes, 17, 175

Phase, angle, 148; shift, 148

Piercing point, 192

Plane, equation of, 177; formulae, 188

Flanes, concurrent, 187; parallel, 185;
petpendicular, 185; systems of, 186

Point of division, 13, 172

Polar, 119; coordinates, 124; equa-
tion of a conic, 127

MSection of a cone, 101
\Bine wave, 147; damped, 151 q

Pole, 119, 124
Polynomial, 44 .
Projecting, cylinder, 208; planes, 19]
Projections, 12, 172
Properties, of ellipse, 86; of hyper

bola, 48; of parabola, 78 .
Pythagorean theorem, 5 '
Quadratic equation, 1 ) .
Quadric surfaces, 213 N\ ¢
Radian, 4 ¢\
Radical, axis, 68; cenfer, )
Radius vector, 124 4 7
Rectangular hypérbola, 92
Rhoembus, 25,73
Rose-leaf curves, 135
Rotation,NB&, 110, 220
Ruled \iurfaces, 219

INY

S&ﬁtﬁlé examinations, 227

Skew, lines, 195; curves, 198

Slope, 15

Spiral of Archimedes, 136

Straight line formulae, b8, 126, 19

Sirophoid, 141, 145 ‘

Surfaces of revolution, 201

Symmetry, 32 ]

Systems, of circles, 67; of conics, 116
of lines, 53; of planes, 186

Tangent, length of, 67; to circle, &t
to conic, 117; to ellipse, 85; [
hyperbola, 96; to parabola, 77

Torus, 203

Trace, 204

Translation, 104, 112, 220 >

Triangle, area of, 21; medians of,

Trigonometry, 5

Trisectrix, 141

Trochoid, 158

Vertex, of ellipse, 80; of hyperbok
90; of parabola, 73

Witch of Agnesi, 142
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